Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros










Intervalo de año de publicación
1.
Sleep ; 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38788154

RESUMEN

STUDY OBJECTIVES: Sleep deprivation is a potential risk factor for metabolic diseases, including obesity and type 2 diabetes. We evaluated the impacts of moderate chronic sleep deprivation on glucose and lipid homeostasis in adult rats. METHODS: Wistar rats (both sexes) were sleep-perturbed daily for two hours at the early (06:00-08:00) and the late light cycle (16:00-18:00) five days a week (except weekends) for four weeks. RESULTS: Sleep perturbation (SP) resulted in reduced body weight gain in both sexes, associated with altered food intake and reduced adiposity. SP did not alter the short- or long-term memories or cause anxiogenic behavior. No major changes were observed in the plasma insulin, leptin, triacylglycerol, non-esterified fatty acids and blood glucose upon SP. After SP, females exhibited a transitory glucose intolerance, while males became glucose intolerant at the end of the experimental period. Male rats also developed higher insulin sensitivity at the end of the SP protocol. Morphometric analyses revealed no changes in hepatic glycogen deposition, pancreatic islet mass, islet-cell distribution, or adrenal cortex thickness in SP rats from both sexes, except for lower adipocyte size compared with controls. We did not find homogeneous changes in the relative expression of circadian and metabolic genes in muscle or hepatic tissues from the SP rats. CONCLUSIONS: Moderate chronic SP reduces visceral adiposity and causes glucose intolerance with a more pronounced impact on male rats, reinforcing the metabolic risks of exposure to sleep disturbances.

2.
Ageing Res Rev ; 93: 102149, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38056504

RESUMEN

Familial hypercholesterolemia (FH) is a metabolic condition caused mainly by a mutation in the low-density lipoprotein (LDL) receptor gene (LDLR), which is highly prevalent in the population. Besides being an important causative factor of cardiovascular diseases, FH has been considered an early risk factor for Alzheimer's disease. Cognitive and emotional behavioral impairments in LDL receptor knockout (LDLr-/-) mice are associated with neuroinflammation, blood-brain barrier dysfunction, impaired neurogenesis, brain oxidative stress, and mitochondrial dysfunction. Notably, today, LDLr-/- mice, a widely used animal model for studying cardiovascular diseases and atherosclerosis, are also considered an interesting tool for studying dementia. Here, we reviewed the main findings in LDLr-/- mice regarding the relationship between FH and brain dysfunctions and dementia development.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Cardiovasculares , Hipercolesterolemia , Hiperlipoproteinemia Tipo II , Humanos , Animales , Ratones , Hipercolesterolemia/epidemiología , Hipercolesterolemia/genética , Hipercolesterolemia/metabolismo , Enfermedades Cardiovasculares/genética , Factores de Riesgo , Hiperlipoproteinemia Tipo II/complicaciones , Hiperlipoproteinemia Tipo II/genética , Encéfalo/metabolismo , Cognición , Factores de Riesgo de Enfermedad Cardiaca
3.
Addict Biol ; 28(1): e13249, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36577722

RESUMEN

ß-caryophyllene (BCP) is a cannabinoid receptor CB2 agonist plant-derived terpenoid found in different essential oil plants, including rosemary, black pepper, copaiba and cannabis. It has GRAS (generally recognized as safe) status and is approved by the FDA (Food and Drug Administration) for food use. BCP displays agonist activity on the CB2 receptor and is a potential therapeutic target in several neuropsychiatric disorders, including anxiety and drug addiction. Unlike CB1 receptors, activation of the CB2 receptors is devoid of psychotomimetic and addictive properties. In this regard, this study aimed to evaluate the effects of BCP on incentive salience ("wanting") performance and motivational properties elicited by sweetened palatable foods in female Swiss mice. After 9 days of training for incentive salience performance for a sweet reward (hazelnut cream with chocolate), food-restricted mice received a systemic injection of BCP (50 and 100 mg/kg) before testing over 3 days. Moreover, independent groups of female mice were tested on sweet reward-induced conditioned place preference (CPP) for 22 consecutive days. To evaluate BCP effects on the expression of seeking behaviour for sweetened food, mice received a single intraperitoneal injection of BCP (50 mg/kg) 30 min before testing on the CPP task. BCP significantly decreased the incentive performance for a sweet reward compared with the control group in a CB2 receptor-dependent manner. Also, BCP suppressed the expression of sweet reward-CPP. Altogether, these preclinical data demonstrate the potential role of BCP in treating disorders associated with food addiction-like behaviour.


Asunto(s)
Sesquiterpenos , Ratones , Animales , Sesquiterpenos/farmacología , Agonistas de Receptores de Cannabinoides/farmacología , Motivación , Receptor Cannabinoide CB2 , Receptor Cannabinoide CB1
4.
Artículo en Inglés | MEDLINE | ID: mdl-36521585

RESUMEN

Behavioral flexibility permits the appropriate behavioral adjustments in response to changing environmental demands. The present study aimed to evaluate if variability in baseline flexibility can enable differences in coping strategies, changes in neuroplasticity, and behavioral outcomes in responses to chronic social defeat stress (CSDS). Male C57BL6 mice were submitted to the Morris Water Maze (MWM) using an extended protocol for reversal learning to assess. The animals were divided into low and high behavioral flexibility groups based on their performance on the last day of acquisition versus the four days of reversal learning. The CSDS was applied for ten consecutive days, and coping strategies were evaluated during the physical interaction on the first and last day of stress. A battery of behavioral tests to assess social and emotional behavior was conducted 24 h after the CSDS protocol. The complexity of prefrontal cortex (PFC) neuronal morphology was evaluated by the Golgi-Cox method. Animals with High Flexibility exhibited changes in their CSDS coping strategies, from active to passive coping, during the CSDS protocol. Low Flexibility mice had no alterations in the coping strategies during CSDS. After social stress, High Flexibility was associated with reduced social interaction with an aggressive Swiss mouse, higher latency to immobility in the tail suspension test, and reduced latency to self-care in the sucrose splash test. High Flexibility mice also displayed higher dendritic complexity on pyramidal neurons from the prelimbic and infralimbic prefrontal cortex compared to Low Flexibility mice. These results suggest That High Flexibility is associated with increased neuroplasticity in cortical areas and better emotional responses related to behavioral despair and motivation. However, exposure to CSDS reversed the beneficial effects of High Flexibility in male mice. Thus, this study suggests that baseline variability in behavioral flexibility, even in inbred strains, might be associated with differences in coping strategies, PFC morphology, and behavioral responses to social stress.


Asunto(s)
Emociones , Derrota Social , Ratones , Animales , Masculino , Ratones Endogámicos C57BL , Estrés Psicológico/psicología , Adaptación Psicológica
5.
Neurotoxicology ; 94: 59-70, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36336098

RESUMEN

Pyrrolizidine alkaloids (PAs) are secondary plant metabolites playing an important role as phytotoxins in the plant defense mechanisms and can be present as contaminant in the food of humans and animals. The PA monocrotaline (MCT), one of the major plant derived toxin that affect humans and animals, is present in a high concentration in Crotalaria spp. (Leguminosae) seeds and can induce toxicity after consumption, characterized mainly by hepatotoxicity and pneumotoxicity. However, the effects of the ingestion of MCT in the central nervous system (CNS) are still poorly elucidated. Here we investigated the effects of MCT oral acute administration on the behavior and CNS toxicity in rats. Male adult Wistar were treated with MCT (109 mg/Kg, oral gavage) and three days later the Elevated Pluz Maze test demonstrated that MCT induced an anxiolytic-like effect, without changes in novelty habituation and in operational and spatial memory profiles. Histopathology revealed that the brain of MCT-intoxicated animals presented hyperemic vascular structures in the hippocampus, parahippocampal cortex and neocortex, mild perivascular edema in the neocortex, hemorrhagic focal area in the brain stem, hemorrhage and edema in the thalamus. MCT also induced neurotoxicity in the cortex and hippocampus, as revealed by Fluoro Jade-B and Cresyl Violet staining, as well astrocyte reactivity, revealed by immunocytochemistry for glial fibrillary acidic protein. Additionally, it was demonstrated by RT-qPCR that MCT induced up-regulation on mRNA expression of neuroinflammatory mediator, especially IL1ß and CCL2 in the hippocampus and cortex, and down-regulation on mRNA expression of neurotrophins HGDF and BDNF in the cortex. Together, these results demonstrate that the ingestion of MCT induces cerebrovascular lesions and toxicity to neurons that are associated to astroglial cell response and neuroinflammation in the cortex and hippocampus of rats, highlighting CNS damages after acute intoxication, also putting in perspective it uses as a model for cerebrovascular damage.


Asunto(s)
Gliosis , Monocrotalina , Humanos , Ratas , Animales , Monocrotalina/toxicidad , Monocrotalina/metabolismo , Gliosis/inducido químicamente , Ratas Wistar , Astrocitos/metabolismo , ARN Mensajero/metabolismo
6.
Fundam Clin Pharmacol ; 37(1): 94-106, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35996325

RESUMEN

Brain insulin resistance has been pointed to as a possible link between diabetes and neuropsychiatric disorders; therefore, therapeutic approaches using anti-diabetic drugs to improve insulin levels or signaling could prevent type 1 (T1D) and type 2 diabetes mellitus (T2D)-induced brain dysfunction. The present study aimed to determine whether metformin exerts beneficial effects on metabolic and neurobehavioral outcomes in the streptozotocin (STZ)-induced T1D model and western diet (WD)-induced obesity model in male Swiss mice. T1D was induced by intraperitoneal injection of STZ (50 mg/kg, for five consecutive days). The animals were then treated daily with saline or metformin (200 mg/kg/day, oral gavage), and a battery of tests recapitulating different neurobehavioral anomalies related to anxiogenic/depressive-like phenotype was conducted after 18 days. WD-induced obesity was modeled in mice by high-fat and high-fructose diet (HFFD) feeding for 15 days. In the sequence, control and diet-induced obesity mice were treated daily with saline or metformin (200 mg/kg/day), and a battery of behavioral tests was performed after 17 days. STZ injection and WD feeding induced metabolic and neurobehavioral impairments in mice. Remarkably, metformin improved the metabolic and neurobehavioral parameters in WD-induced obesity mice. Moreover, metformin ameliorated STZ-induced neurobehavioral deficits while it failed to improve the associated metabolic impairments. The beneficial effects of metformin in STZ-induced neurobehavioral impairments were not mediated by improving peripheral insulin signaling. Our results suggest that conventional diabetes treatment could be repurposed to simultaneously improve neurobehavioral symptoms and diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Metformina , Ratones , Masculino , Animales , Metformina/farmacología , Metformina/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Hipoglucemiantes/uso terapéutico , Estreptozocina , Dieta Occidental/efectos adversos , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/inducido químicamente , Insulina , Glucosa/metabolismo , Obesidad/tratamiento farmacológico , Glucemia , Dieta Alta en Grasa/efectos adversos
7.
Biomed Pharmacother ; 154: 113552, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35988425

RESUMEN

Fibromyalgia (FM) is an idiopathic disorder characterized by generalized pain and associated symptoms such as depression and anxiety. Cannabis sativa shows different pharmacological activities, such as analgesic, anti-inflammatory, neuroprotective, and immunomodulatory. Associated with this, the use of an oil with low concentrations of THC can reduce the psychomimetic adverse effects of the plant. Therefore, the present study aimed to evaluate the analgesic effect of broad-spectrum cannabis oil with low THC concentration in an experimental model of FM. Mechanical hyperalgesia, thermal allodynia, depressive- and anxious-related behavior, and locomotor activity were evaluated after reserpine (0.25 mg/kg; injected subcutaneously (s.c.) once daily for three consecutive days) administration. Our results showed that oral administration of broad-spectrum cannabis oil (0.1, 1, and 3 mg/kg, p.o.) in a single dose on the 4th day inhibited mechanical hyperalgesia and thermal allodynia induced by reserpine. Relevantly, treatment during four days with broad-spectrum cannabis oil (0.1 mg/kg, p.o.) reduced mechanical hyperalgesia 1 h after reserpine administration. Intraplantar treatment with cannabis oil significantly reversed mechanical and heat thermal nociception induced by reserpine injection. Interestingly, spinal and supraspinal administration of broad-spectrum cannabis oil completely inhibited mechanical hyperalgesia and thermal sensitivity induced by reserpine. The repeated cannabis oil administration, given daily for 14 days, markedly mitigated the mechanical and thermal sensitivity during the FM model, and its reduced depressive-like behavior induced by reserpine. In summary, broad-spectrum cannabis oil is an effective alternative to reverse the reserpine-induced fibromyalgia model.


Asunto(s)
Cannabis , Fibromialgia , Analgésicos/efectos adversos , Animales , Modelos Animales de Enfermedad , Dronabinol/efectos adversos , Fibromialgia/inducido químicamente , Fibromialgia/tratamiento farmacológico , Hiperalgesia/inducido químicamente , Hiperalgesia/complicaciones , Hiperalgesia/tratamiento farmacológico , Ratones , Reserpina/efectos adversos
8.
J Pharm Pharmacol ; 73(5): 673-681, 2021 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-33772293

RESUMEN

OBJECTIVE: While chronic feeding with high-fat or high-sugar diets is known related to obesity and type 2 diabetes, later data have indicated that it is also related to depression and anxiety appearance. In this regard, multi-target drugs raise considerable interest as promising therapeutic solutions to complex diseases. Considering the pharmacological effects of the imidazopyridine-derivative moiety imidazo[1,2-a]pyridine and the organoselenium molecules, the combination of both could be a feasible strategy to develop efficient drugs to handle obesity and related comorbidities, for example dyslipidemia and mood disorders. METHODS: The antidepressant- and anxiolytic-like properties of a selanylimidazopyridine compound, 2-Phenyl-3-(phenylselanyl)imidazo[1,2-a]pyridine (3-SePh-IP), were evaluated on high-fat/high-fructose diet (HFFD)-fed female Swiss mice. KEY FINDINGS: Our results showed that a short-term HFFD (16 days) could promote a significant body weight gain, hypercholesterolemia, glucose intolerance, and anxiety- and depressive-like behaviour in mice. Concomitant treatment with 3-SePh-IP (10 mg/kg; i.p.) attenuated the HFFD-induced increase in cholesterol levels and blunted the anxiety- and depressive-like behaviour in mice. CONCLUSIONS: 3-SePh-IP holds multimodal pharmacological properties, which provide a rationale for further studies, for example to assess the underlying mechanisms linked to its anxiolytic- and antidepressive-like activities.


Asunto(s)
Ansiedad/tratamiento farmacológico , Depresión/tratamiento farmacológico , Dieta Alta en Grasa/efectos adversos , Fructosa/efectos adversos , Imidazoles/farmacología , Compuestos de Organoselenio/farmacología , Piridinas/farmacología , Animales , Ansiedad/inducido químicamente , Conducta Animal/efectos de los fármacos , Depresión/inducido químicamente , Quimioterapia Combinada , Femenino , Suspensión Trasera , Ratones , Aumento de Peso/efectos de los fármacos
9.
Nutr Neurosci ; 24(12): 978-988, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31910791

RESUMEN

Although the benefits of moderate intake of red wine in decreasing incidence of cardiovascular diseases associated to hypercholesterolemia are well recognized, there are still widespread misconceptions about its effects on the hypercholesterolemia-related cognitive impairments. Herein we investigated the putative benefits of regular red wine consumption on cognitive performance of low-density lipoprotein receptor knockout (LDLr-/-) mice, an animal model of familial hypercholesterolemia, which display cognitive impairments since early ages. The red wine was diluted into the drinking water to a final concentration of 6% ethanol and was available for 60 days for LDLr-/- mice fed a normal or high-cholesterol diet. The results indicated that moderate red wine consumption did not alter locomotor parameters and liver toxicity. Across multiple cognitive tasks evaluating spatial learning/reference memory and recognition/identification memory, hypercholesterolemic mice drinking red wine performed significantly better than water group, regardless of diet. Additionally, immunofluorescence assays indicated a reduction of astrocyte activation and lectin stain in the hippocampus of LDLr-/- mice under consumption of red wine. These findings demonstrate that the moderate consumption of red wine attenuates short- and long-term memory decline associated with hypercholesterolemia in mice and suggest that it could be through a neurovascular action.


Asunto(s)
Disfunción Cognitiva/etiología , Disfunción Cognitiva/prevención & control , Hipercolesterolemia/complicaciones , Receptores de LDL/fisiología , Vino , Animales , Conducta Animal , Encéfalo/irrigación sanguínea , Colesterol en la Dieta/administración & dosificación , Modelos Animales de Enfermedad , Hipocampo/fisiopatología , Hipercolesterolemia/genética , Hipercolesterolemia/fisiopatología , Hepatopatías Alcohólicas , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora , Receptores de LDL/deficiencia , Receptores de LDL/genética
10.
Physiol Behav ; 228: 113187, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32987042

RESUMEN

Clinical evidence has shown that a high consumption of sugar-sweetened beverages is a risk factor for developing obesity and metabolic syndrome. There has also been increasing interest in the potential effects of high-fructose intake on behavior. The present study evaluated sex differences in behavioral and metabolic characteristics in response to chronic fructose intake in mice. Swiss mice (3-months-old) had access to tap water or fructose-water solution (at 15% or 30% w/v) ad libitum for nine weeks. After the 8 weeks, the mice were submitted to a battery of behavioral tests. A glucose tolerance test was performed one day after these behavioral tests, and the next day blood was collected for biochemical analysis. At a 15% concentration, fructose-intaking resulted in higher plasma cholesterol levels and glucose intolerance in mice that paralleled with a passive stress-coping behavior in the female mice and lower self-care behavior in the male and the female mice. At a 30% concentration, fructose-intaking resulted in higher body mass gain and higher plasma cholesterol and triglycerides levels in the male and the female mice, whereas glucose intolerance was more pronounced in the male mice. Spatial memory impairments and lower self-care behavior were observed in the male and the female mice, while passive stress-coping behavior was observed only in the female mice. Collectively, high-fructose intake induces metabolic and behavioral alterations in mice, with the males being more susceptible to glucose metabolism dysfunctions and the females to depressive-like endophenotypes.


Asunto(s)
Fructosa , Intolerancia a la Glucosa , Animales , Bebidas , Glucemia , Femenino , Intolerancia a la Glucosa/inducido químicamente , Prueba de Tolerancia a la Glucosa , Masculino , Ratones , Obesidad
11.
Behav Brain Res ; 398: 112969, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33075395

RESUMEN

Obesity represents a risk factor for metabolic syndrome and cardiovascular and psychiatric disorders. Excessive caloric intake, particularly in dietary fats, is an environmental factor that contributes to obesity development. Thus, the observation that switching from long-standing dietary obesity to standard diet (SD) can ameliorate the high-fat diet-induced metabolic, memory, and emotionality-related impairments are particularly important. Herein we investigated whether switching from the high-fat diet (HFD) to SD could improve the metabolic and behavioral impairments observed in middle-aged females C57Bl/6 mice. During twelve weeks, the animals received a high-fat diet (61 % fat) or SD diet. After 12-weeks, the HFD group's diet was switched to SD for an additional four weeks. It was observed a progressive deleterious effect of HFD in metabolic and behavioral parameters in mice. After four weeks of HFD-feeding, the animals showed glucose intolerance and increased locomotor activity. A subsequent increase in the body mass gain, hyperglycemia, and depressive-like behavior was observed after eight weeks, and memory impairments after twelve weeks. After replacing the HFD to SD, it was observed an improvement of metabolic (loss of body mass, normal plasma glucose levels, and glucose tolerance) and behavioral (absence of memory and emotional alterations) parameters. These results demonstrate the temporal development of metabolic and behavioral impairments following HFD in middle-age female mice and provide new evidence that these alterations can be improved by switching back the diet to SD.


Asunto(s)
Disfunción Cognitiva/etiología , Depresión/etiología , Dieta Alta en Grasa/efectos adversos , Hiperglucemia/etiología , Locomoción/fisiología , Motivación/fisiología , Obesidad/etiología , Memoria Espacial/fisiología , Factores de Edad , Animales , Conducta Animal/fisiología , Disfunción Cognitiva/dietoterapia , Depresión/dietoterapia , Modelos Animales de Enfermedad , Femenino , Intolerancia a la Glucosa/sangre , Intolerancia a la Glucosa/dietoterapia , Intolerancia a la Glucosa/etiología , Hiperglucemia/sangre , Hiperglucemia/dietoterapia , Ratones , Ratones Endogámicos C57BL
12.
Stress ; 23(4): 466-473, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32107952

RESUMEN

Convincing evidence shows that stress is associated with the development and course of psychiatric and metabolic disorders. The hypothalamic-pituitary-adrenal (HPA) axis mediates the stress response, a cascade of events that culminate in the release of glucocorticoids from the adrenal cortex. Chronic hypercortisolism typically characterizes stress-related illnesses, such as depression, anxiety, and metabolic syndrome. Considering previous studies pointing that environmental enrichment (EE) mitigates the deleterious effects of stress on neurobiological systems, we hypothesized that EE can confer resiliency against prolonged glucocorticoid administration-induced behavioral and metabolic alterations in mice. In this regard, three-month-old male Swiss mice were exposed to a four-week period of standard environment (SE) or EE. After this period, still in the respective environments, dexamethasone was administered intraperitoneally (i.p.) at a dose of 4 mg/kg, for 21 consecutive days, in order to generate the emotional-related behavioral outcomes, as previously described. It is demonstrated herein that EE prevents the dexamethasone-induced anxiety-like and passive stress-coping behaviors, as observed in the open field and tail suspension tests. Moreover, EE mitigated the hyperproteinemia and body weight loss induced by excess dexamethasone and decreased basal glucose levels. Taken together, these results support the hypothesis that EE attenuates the effects of chronic administration of synthetic glucocorticoids in mice, a strategy that may be translated to the clinical perspective.


Asunto(s)
Ambiente , Estrés Psicológico , Animales , Dexametasona/farmacología , Sistema Hipotálamo-Hipofisario , Masculino , Ratones , Sistema Hipófiso-Suprarrenal
13.
J Alzheimers Dis ; 73(2): 585-596, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31815695

RESUMEN

Familial hypercholesterolemia (FH) is a genetic disorder caused by dysfunction of low density lipoprotein receptors (LDLr), resulting in elevated plasma cholesterol levels. FH patients frequently exhibit cognitive impairment, a finding recapitulated in LDLr deficient mice (LDLr-/-), an animal model of FH. In addition, LDLr-/- mice are more vulnerable to the deleterious memory impact of amyloid-ß (Aß), a peptide linked to Alzheimer's disease. Here, we investigated whether the expression of proteins involved in Aß metabolism are altered in the brains of adult or middle-aged LDLr-/- mice. After spatial memory assessment, Aß levels and gene expression of LDLr related-protein 1, proteins involved in Aß synthesis, and apoptosis-related proteins were evaluated in prefrontal cortex and hippocampus. Moreover, the location and cell-specificity of apoptosis signals were evaluated. LDLr-/- mice presented memory impairment, which was more severe in middle-aged animals. Memory deficit in LDLr-/- mice was not associated with altered expression of proteins involved in Aß processing or changes in Aß levels in either hippocampus or prefrontal cortex. We further found that the expression of Bcl-2 was reduced while the expression of Bax was increased in both prefrontal cortex and hippocampus in 3- and 14-month-old LDLr-/-mice Finally, LDLr-/- mice presented increased immunoreactivity for activated caspase-3 in the prefrontal cortex and hippocampus. The activation of caspase 3 was predominantly associated with neurons in LDLr-/- mice. Cognitive impairment in LDLr-/- mice is thus accompanied by an exacerbation of neuronal apoptosis in brain regions related to memory formation, but not by changes in Aß processing or levels.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Apoptosis/genética , Química Encefálica/genética , Receptores de LDL/deficiencia , Receptores de LDL/genética , Envejecimiento/metabolismo , Envejecimiento/psicología , Animales , Caspasa 3 , Colesterol/sangre , Expresión Génica , Hipocampo/metabolismo , Masculino , Aprendizaje por Laberinto , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Corteza Prefrontal/metabolismo
14.
Behav Brain Res ; 359: 648-656, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30287273

RESUMEN

While chronic high-fat feeding has long been associated with the rising incidence of obesity/type 2 diabetes, recent evidence has established that it is also associated with deficits in hippocampus-dependent memory. In this regard, environmental enrichment (EE) is an animal housing technique composed of increased space, physical activity, and social interactions, which in turn increases sensory, cognitive, motor, and social stimulation. EE leads to improved cerebral health as defined by increased neurogenesis, enhanced learning and memory and resistance to external cerebral insults. In the present study, the impacts of environmental enrichment (EE) on Swiss mice fed a high-fat, cholesterol-enriched diet (HFECD; 20% fat and 1.5% cholesterol) were investigated. Here, we demonstrated that EE, when initiated 4 weeks after the beginning of HFECD in mice, prevents HFECD-induced spatial memory and object recognition impairment, which were tested in T-maze and object recognition tests. Although EE did not affect HFECD-induced weight gain or hypercholesterolaemia, it improved glucose tolerance. On the other hand, EE was unable to mitigate a decrease in brain-derived neurotrophic factor (BDNF) and IL-6 hippocampal levels induced by the HFECD. Overall, while our results reinforce the positive and neuroprotective effects of EE on cognition they do not support a role for EE in preventing the neurochemical changes induced by the HFECD. Based on clinical observations that nondiabetic individuals with mild forms of impaired glucose tolerance have a higher risk of cognitive impairments, one can speculate about the connection between the effects of EE on glucose intolerance and its effects on cognition.


Asunto(s)
Colesterol/efectos adversos , Disfunción Cognitiva/terapia , Dieta Alta en Grasa/efectos adversos , Ambiente , Vivienda para Animales , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Disfunción Cognitiva/etiología , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/patología , Modelos Animales de Enfermedad , Intolerancia a la Glucosa/etiología , Intolerancia a la Glucosa/metabolismo , Intolerancia a la Glucosa/patología , Intolerancia a la Glucosa/terapia , Hipocampo/metabolismo , Hipocampo/patología , Hipercolesterolemia/etiología , Hipercolesterolemia/metabolismo , Hipercolesterolemia/patología , Hipercolesterolemia/psicología , Interleucina-6/metabolismo , Masculino , Ratones , Obesidad/etiología , Obesidad/metabolismo , Obesidad/patología , Obesidad/psicología , Distribución Aleatoria , Reconocimiento en Psicología , Memoria Espacial
15.
Front Neurosci ; 12: 1020, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30686986

RESUMEN

There is a mutual relationship between metabolic and neurodegenerative diseases. However, the causal relationship in this crosstalk is unclear and whether Parkinson's disease (PD) causes a posterior impact on metabolism remains unknown. Considering that, this study aimed to evaluate the appearance of possible changes in metabolic homeostasis due to 6-hydroxydopamine (6-OHDA) administration, a neurotoxin that damage dopaminergic neurons leading to motor impairments that resemble the ones observed in PD. For this, male Wistar rats received bilateral 6-OHDA administration in the dorsolateral striatum, and the motor and metabolic outcomes were assessed at 7, 21, or 35 days post-surgical procedure. Dexamethasone, a diabetogenic glucocorticoid (GC), was intraperitoneally administered in the last 6 days to challenge the metabolism and reveal possible metabolic vulnerabilities caused by 6-OHDA. Controls received only vehicles. The 6-OHDA-treated rats displayed a significant decrease in locomotor activity, exploratory behavior, and motor coordination 7 and 35 days after neurotoxin administration. These motor impairments paralleled with no significant alteration in body mass, food intake, glucose tolerance, insulin sensitivity, and biochemical parameters (plasma insulin, triacylglycerol, and total cholesterol levels) until the end of the experimental protocol on days 35-38 post-6-OHDA administration. Moreover, hepatic glycogen and fat content, as well as the endocrine pancreas mass, were not altered in rats treated with 6-OHDA at the day of euthanasia (38th day after neurotoxin administration). None of the diabetogenic effects caused by dexamethasone were exacerbated in rats previously treated with 6-OHDA. Thus, we conclude that bilateral 6-OHDA administration in the striatum causes motor deficits in rats with no impact on glucose and lipid homeostasis and does not exacerbate the adverse effects caused by excess GC. These observations indicate that neurodegeneration of dopaminergic circuits in the 6-OHDA rats does not affect the metabolic outcomes.

16.
Brain Res ; 1663: 78-86, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28288867

RESUMEN

Moderate traumatic brain injury (TBI) might increase the vulnerability to neuronal neurodegeneration, but the basis of such selective neuronal susceptibility has remained elusive. In keeping with the disruption of the blood-brain barrier (BBB) caused by TBI, changes in BBB permeability following brain injury could facilitate the access of xenobiotics into the brain. To test this hypothesis, here we evaluated whether TBI would increase the susceptibility of nigrostriatal dopaminergic fibers to the systemic administration of 6-hydroxydopamine (6-OHDA), a classic neurotoxin used to trigger a PD-like phenotype in mice, but that in normal conditions is unable to cross the BBB. Adult Swiss mice were submitted to a moderate TBI using a free weight-drop device and, 5h later, they were injected intraperitoneally with a single dose of 6-OHDA (100mg/kg). Afterwards, during a period of 4weeks, the mice were submitted to a battery of behavioral tests, including the neurological severity score (NSS), the open field and the rotarod. Animals from the TBI plus 6-OHDA group displayed significant motor and neurological impairments that were improved by acute l-DOPA administration (25mg/kg, i.p.). Moreover, the observation of the motor deficits correlates with (i) a significant decrease in the tyrosine hydroxylase levels mainly in the rostral striatum and (ii) a significant increase in the levels of striatal glial fibrillary acidic protein (GFAP) levels. On the whole, the present findings demonstrate that a previous moderate TBI event increases the susceptibility to motor, neurological and neurochemical alterations induced by systemic administration of the dopaminergic neurotoxin 6-OHDA in mice.


Asunto(s)
Lesiones Traumáticas del Encéfalo/metabolismo , Oxidopamina/toxicidad , Animales , Conducta Animal , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Lesiones Encefálicas/metabolismo , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/patología , Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad , Dopamina/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Proteína Ácida Fibrilar de la Glía/metabolismo , Levodopa/metabolismo , Ratones , Enfermedades Neurodegenerativas , Síndromes de Neurotoxicidad/metabolismo , Oxidopamina/metabolismo , Tirosina 3-Monooxigenasa/metabolismo
17.
Mol Neurobiol ; 54(2): 1513-1530, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-26852411

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disorder characterized by non-motor and motor disabilities. This study investigated whether succinobucol (SUC) could mitigate nigrostriatal injury caused by intranasal 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration in mice. Moreover, the effects of SUC against MPTP-induced behavioral impairments and neurochemical changes were also evaluated. The quantification of tyrosine hydroxylase-positive (TH+) cells was also performed in primary mesencephalic cultures to evaluate the effects of SUC against 1-methyl-4-phenylpyridinium (MPP+) toxicity in vitro. C57BL/6 mice were treated with SUC (10 mg/kg/day, intragastric (i.g.)) for 30 days, and thereafter, animals received MPTP infusion (1 mg/nostril) and SUC treatment continued for additional 15 days. MPTP-infused animals displayed significant non-motor symptoms including olfactory and short-term memory deficits evaluated in the olfactory discrimination, social recognition, and water maze tasks. These behavioral impairments were accompanied by inhibition of mitochondrial NADH dehydrogenase activity (complex I), as well as significant decrease of TH and dopamine transporter (DAT) immunoreactivity in the substantia nigra pars compacta and striatum. Although SUC treatment did not rescue NADH dehydrogenase activity inhibition, it was able to blunt MPTP-induced behavioral impairments and prevented the decrease in TH and DAT immunoreactivities in substantia nigra (SN) and striatum. SUC also suppressed striatal astroglial activation and increased interleukin-6 levels in MPTP-intoxicated mice. Furthermore, SUC significantly prevented the loss of TH+ neurons induced by MPP+ in primary mesencephalic cultures. These results provide new evidence that SUC treatment counteracts early non-motor symptoms and neurodegeneration/neuroinflammation in the nigrostriatal pathway induced by intranasal MPTP administration in mice by modulating events downstream to the mitochondrial NADH dehydrogenase inhibition.


Asunto(s)
Anticolesterolemiantes/uso terapéutico , Cuerpo Estriado/efectos de los fármacos , Trastornos Parkinsonianos/tratamiento farmacológico , Probucol/análogos & derivados , Sustancia Negra/efectos de los fármacos , Animales , Anticolesterolemiantes/farmacología , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Femenino , Masculino , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/patología , Ratones , Ratones Endogámicos C57BL , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/patología , Embarazo , Probucol/farmacología , Probucol/uso terapéutico , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Olfato/efectos de los fármacos , Olfato/fisiología , Sustancia Negra/metabolismo , Sustancia Negra/patología
18.
Behav Brain Res ; 311: 31-38, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27185735

RESUMEN

Although epidemiological studies have reported an association between hypercholesterolemia and mood disorders, there is a lack of data regarding depressive-like behavior in animal models of hypercholesterolemia. To address these questions, we assessed depressive-like behavior and hippocampal and cortical monoaminergic metabolism in three-month-old, low-density lipoprotein receptor knockout (LDLr(-/-)) and C57BL/6 wild-type mice. The LDLr(-/-) mice exhibited depressive-like behavior in the sucrose preference test, splash test, and tail suspension test. Increased monoamine oxidase (MAO) A and B activity was evidenced in the hippocampus of LDLr(-/-) mice. Furthermore, to address whether or not cholesterol modulates MAO activity, we exposed SH-SY5Y human neuroblastoma cells to human isolated low-density lipoprotein (LDL). Notably, LDL increased the activity of MAO-A and stimulated the reactive species generation in vitro. These findings indicate that depressive-like behavior in hypercholesterolemic mice is accompanied by alterations in the monoaminergic metabolism, providing new evidence about the association between hypercholesterolemia and depression.


Asunto(s)
Depresión/metabolismo , Hipercolesterolemia/metabolismo , Hipercolesterolemia/psicología , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Hipocampo/metabolismo , Humanos , Lipoproteínas LDL/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Monoaminooxidasa/metabolismo , Receptores de LDL/deficiencia , Receptores de LDL/genética
19.
Arch Toxicol ; 90(3): 647-60, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25618550

RESUMEN

The organophosphorus (OP) pesticide malathion is a neurotoxic compound whose acute toxicity is primarily caused by the inhibition of acetylcholinesterase (AChE), leading to cholinergic syndrome-related symptoms. Some lines of evidence indicate that long-term exposure to low levels of OP may produce neuropsychiatric and/or neurobehavioral signs that do not necessarily involve the AChE inhibition. This study evaluated the effects of a repeated (15-day period) and low-dose malathion exposure on spatial memory and discrimination (object location task), as well as on biochemical parameters in the hippocampus of mice [AChE and mitochondrial chain complexes activities; levels of proapoptotic proteins (Bax and Bak) and cholinergic neuronal and astroglial markers (ChAT and GFAP, respectively)]. Malathion treatments (30 and 100 mg/kg, s.c.) did not affect the body weight of animals and caused no evident signs of cholinergic toxicity throughout the treatment, although the highest dose (100 mg/kg) was associated with inhibition of AChE activity. Malathion-exposed animals showed a significant impairment on spatial memory and discrimination, which was correlated with a decrease in the mitochondrial complex I activity in the hippocampus. Moreover, malathion increased the levels of proapoptotic proteins and induced astroglial activation. The results show that long-term malathion exposure, at a dose that does not affect hippocampal AChE activity (30 mg/kg), caused impaired spatial memory and discrimination in mice that was related to hippocampal mitochondrial dysfunctional, astrogliosis and apoptosis. When extrapolated to humans, such results shed light on noncholinergic mechanisms likely related to the neurobehavioral and cognitive deficits observed in individuals chronically exposed to this pesticide.


Asunto(s)
Astrocitos/efectos de los fármacos , Trastornos del Conocimiento/inducido químicamente , Hipocampo/efectos de los fármacos , Insecticidas/toxicidad , Malatión/toxicidad , Animales , Apoptosis/efectos de los fármacos , Astrocitos/patología , Inhibidores de la Colinesterasa/toxicidad , Relación Dosis-Respuesta a Droga , Hipocampo/patología , Masculino , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Memoria Espacial/efectos de los fármacos , Pruebas de Toxicidad Crónica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...