Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Andrology ; 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38380739

RESUMEN

BACKGROUND: Testicular germ cell tumors remain the most frequent solid malignancies in young males. Despite excellent prognosis, the fact that only 60% of patients at diagnosis have elevated serum tumor markers (dependent on stage and histology) and the poor quality of life of patients who develop resistance to chemotherapy cannot be neglected. Consequently, it is mandatory to bring out novel biomarkers. OBJECTIVES: The main goal was to evaluate EZH2 and EHMT2/G9a immunoexpression in a well-characterized patients' cohort of primary and metastatic testicular germ cell tumors, seeking associations with clinicopathological features and discovering differential immunoexpression patterns among specific subtypes. MATERIALS AND METHODS: First, an in silico analysis of the Cancer Genome Atlas database was performed regarding EZH2 and EHMT2/G9a. Then, immunohistochemistry for EZH2 and EHMT2/G9a was carried out in a cohort of testicular germ cell tumor patients, comprising 155 chemo-naïve primary tumors and 11 chemo-treated metastases. Immunoexpression was evaluated using a digital pathology analysis software. RESULTS: Higher EZH2 and EHMT2/G9a expression levels were found in non-seminoma in the in silico analysis, particularly in embryonal carcinoma. Through digital pathology analysis, non-seminomas showed significantly higher EZH2 and EHMT2/G9a immunoexpression, with embryonal carcinoma showing higher expression. Moreover, mixed tumors with 50% or more of embryonal carcinoma component revealed the highest nuclei positivity for both biomarkers. Cisplatin-exposed metastases demonstrated a higher EZH2-positive nuclei and H-score, as well as higher EHMT2/G9a-positive nuclei. DISCUSSION AND CONCLUSION: Overall, our data suggest that EZH2 and EHMT2/G9a might be associated with greater aggressiveness and, eventually, involved in the metastatic setting, paving the way for testing targeted therapies.

2.
Biomolecules ; 13(10)2023 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-37892208

RESUMEN

The androgens/androgen receptor (AR) axis is the main therapeutic target in prostate cancer (PCa). However, while initially responsive, a subset of tumors loses AR expression through mechanisms putatively associated with epigenetic modifications. In this study, we assessed the link between the presence of CpG methylation in the 5'UTR and promoter regions of AR and loss of AR expression. Hence, we characterized and compared the methylation signature at CpG resolution of these regulatory regions in vitro, both at basal levels and following treatment with 5-aza-2-deoxycytidine (DAC) alone, or in combination with Trichostatin A (TSA). Our results showed heterogeneity in the methylation signature of AR negative cell lines and pinpointed the proximal promoter region as the most consistently methylated site in DU-145. Furthermore, this region was extremely resistant to the demethylating effects of DAC and was only significantly demethylated upon concomitant treatment with TSA. Nevertheless, no AR re-expression was detected at the mRNA or protein level. Importantly, after treatment, there was a significant increase in repressive histone marks at AR region 1 in DU-145 cells. Altogether, our data indicate that AR region 1 genomic availability is crucial for AR expression and that the inhibition of histone methyltransferases might hold promise for AR re-expression.


Asunto(s)
Andrógenos , Neoplasias de la Próstata , Masculino , Humanos , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Metilación de ADN , Línea Celular Tumoral , Regiones Promotoras Genéticas , Neoplasias de la Próstata/metabolismo , Epigénesis Genética/genética , Regulación Neoplásica de la Expresión Génica
3.
Front Oncol ; 12: 877379, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35686097

RESUMEN

Prostate cancer (PCa) is the second most common malignancy among men worldwide. Although early-stage disease is curable, advanced stage PCa is mostly incurable and eventually becomes resistant to standard therapeutic options. Different genetic and epigenetic alterations are associated with the development of therapy resistant PCa, with specific players being particularly involved in this process. Therefore, identification and targeting of these molecules with selective inhibitors might result in anti-tumoral effects. Herein, we describe the mechanisms underlying therapy resistance in PCa, focusing on the most relevant molecules, aiming to enlighten the current state of targeted therapies in PCa. We suggest that selective drug targeting, either alone or in combination with standard treatment options, might improve therapeutic sensitivity of resistant PCa. Moreover, an individualized analysis of tumor biology in each PCa patient might improve treatment selection and therapeutic response, enabling better disease management.

4.
Transl Res ; 249: 110-127, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35697274

RESUMEN

Clear cell renal cell carcinoma (ccRCC) is highly prone to metastasize and displays an extremely low 5-year survival rate. Not only miRNAs (miRs) are key gene expression regulators but can also be epigenetically modified. Abnormal miR expression has been linked with epithelial-mesenchymal transition (EMT)-driven ccRCC progression. MiR-30a/c-5p were found downregulated in ccRCC and associated with aggressiveness. Herein, we sought to unravel miR-30a/c-5p mechanistic role in ccRCC. RNA sequencing and genome-wide methylome data of ccRCC and normal tissue samples from The Cancer Genome Atlas database were integrated to identify candidate miRs cytosine-phosphate-guanine (CpG) loci deregulated in ccRCC. TargetScan was searched to identify miR putative targets. MiR-30a/c-5p expression and promoter methylation was evaluated in vitro, by PCR. Western blot, functional and luciferase assays were performed after cell transfection with either pre-miR, antimiR, or siRNA against twinfilin-1 (TWF1). Immunohistochemistry (IHC) was performed in ccRCC tissues. We found miR-30c-5p downregulation and aberrant promoter methylation in ccRCC tissues. In vitro studies revealed concomitant miR-30a/c-5p downregulation and increased promoter methylation, as well as a significant re-expression following decitabine treatment. Functional assays demonstrated that both miRs significantly decreased cell aggressiveness and the protein levels of EMT-promoting players, while upregulating epithelial markers, namely Claudin-1 and ZO-1. Importantly, we confirmed TWF1 as a direct target of both miRs, and its potential involvement in epithelial-mesenchymal transition/mesenchymal-epithelial transition regulation. IHC analysis revealed higher TWF1 expression in primary tissues from patients that developed metastases, after surgical treatment. Our results implicate miR-30a/c-5p in ccRCC cells' aggressiveness attenuation by directly targeting TWF1 and hampering EMT.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , MicroARNs , Humanos , Carcinoma de Células Renales/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , Claudina-1/genética , Claudina-1/metabolismo , Citosina , Decitabina , Regulación Neoplásica de la Expresión Génica , Guanina , Neoplasias Renales/metabolismo , Luciferasas/metabolismo , Proteínas de Microfilamentos , MicroARNs/genética , MicroARNs/metabolismo , Fosfatos/metabolismo , Proteínas Tirosina Quinasas , ARN Interferente Pequeño , Epigénesis Genética
5.
Biomed Pharmacother ; 150: 113031, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35483199

RESUMEN

Castration-resistant prostate cancer (CRPC) is an incurable form of prostate cancer (PCa), with DNMT1 and G9a being reported as overexpressed, rendering them highly attractive targets for precision medicine. CM-272 is a dual inhibitor of both methyltransferases' activity. Herein, we assessed the response of different PCa cell lines to CM-272, in both 2D and 3D models, and explored the molecular mechanisms underlying CM-272 inhibitory effects. CRPC tissues displayed significantly higher DNMT1, G9a and H3K9me2 expression than localized PCa. In vitro, CM-272 caused a significant decrease in PCa cell viability and proliferation alongside with increased apoptotic levels. We disclose that, under the evaluated dose, CM-272 led to G9a activity inhibition, while not significantly affecting DNMT1 activity. Upon G9a knockdown, DU145 and PC3 showed decreased cell viability. Remarkably, DU145 cells treated with CM-272 or with G9a knockdown displayed no differences in viability, suggesting a SET-dependent mechanism. Contrarily, PC3 cell viability impact was higher in G9a knockdown, compared with CM-272 treatment, suggesting an additional G9a function. Moreover, DU145 cells overexpressing catalytically functional G9a disclosed higher resistance to CM-272 treatment, reinforcing that the drug mechanism of action is dependent on G9a catalytic function. Importantly, we successfully assembled spheroids from several prostate cell lines. Our results showed that CM-272 retained its anti-tumoral effects in 3D PCa models, leading to a clear reduction in cancer cell survival. We concluded that inhibition of G9a methyltransferase activity by CM-272 has anti-tumor effect in PCa cells, holding therapeutic potential against CRPC.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Células PC-3 , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología
6.
Pharmaceuticals (Basel) ; 14(7)2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-34358096

RESUMEN

Among the well-established alterations contributing to prostate cancer (PCa) pathogenesis, epigenetics is an important player in its development and aggressive disease state. Moreover, since no curative therapies are available for advanced stage disease, there is an urgent need for novel therapeutic strategies targeting this subset of patients. Thus, we aimed to evaluate the combined antineoplastic effects of DNA methylation inhibitor hydralazine and histone deacetylase inhibitors panobinostat and valproic acid in several prostate cell lines. The effect of these drugs was assessed in four PCa (LNCaP, 22Rv1, DU145 and PC-3) cell lines, as well as in non-malignant epithelial (RWPE-1) and stromal (WPMY-1) cell lines, using several assays to evaluate cell viability, apoptosis, proliferation, DNA damage and clonogenic potential. We found that exposure to each epidrug separately reduced viability of all PCa cells in a dose-dependent manner and that combined treatments led to synergic growth inhibitory effects, impacting also on colony formation, invasion, apoptotic and proliferation rates. Interestingly, antitumoral effects of combined treatment were particularly expressive in DU145 cells. We concluded that hydralazine and panobinostat attenuate malignant properties of PCa cells, constituting a potential therapeutic tool to counteract PCa progression.

7.
Pharmaceutics ; 12(5)2020 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-32365701

RESUMEN

Epigenetic alterations, as a cancer hallmark, are associated with cancer initiation, progression and aggressiveness. Considering, however, that these alterations are reversible, drugs that target epigenetic machinery may have an inhibitory effect upon cancer treatment. The traditional drug discovery pathway is time-consuming and expensive, and thus, new and more effective strategies are required. Drug Repurposing (DR) comprises the discovery of a new medical indication for a drug that is approved for another indication, which has been recalled, that was not accepted or failed to prove efficacy. DR presents several advantages, mainly reduced resources, absence of the initial target discovery process and the reduced time necessary for the drug to be commercially available. There are numerous old drugs that are under study as repurposed epigenetic inhibitors which have demonstrated promising results in in vitro tumor models. Herein, we summarize the DR process and explore several repurposed drugs with different epigenetic targets that constitute promising candidates for cancer treatment, highlighting their mechanisms of action.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...