Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Vaccines (Basel) ; 12(4)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38675725

RESUMEN

The worldwide spread of SARS-CoV-2 has led to a significant economic and social burden on a global scale. Even though the pandemic has concluded, apprehension remains regarding the emergence of highly transmissible variants capable of evading immunity induced by either vaccination or prior infection. The success of viral penetration is due to the specific amino acid residues of the receptor-binding motif (RBM) involved in viral attachment. This region interacts with the cellular receptor ACE2, triggering a neutralizing antibody (nAb) response. In this study, we evaluated serum immunogenicity from individuals who received either a single dose or a combination of different vaccines against the original SARS-CoV-2 strain and a mutated linear RBM. Despite a modest antibody response to wild-type SARS-CoV-2 RBM, the Omicron variants exhibit four mutations in the RBM (S477N, T478K, E484A, and F486V) that result in even lower antibody titers. The primary immune responses observed were directed toward IgA and IgG. While nAbs typically target the RBD, our investigation has unveiled reduced seroreactivity within the RBD's crucial subregion, the RBM. This deficiency may have implications for the generation of protective nAbs. An evaluation of S1WT and S2WT RBM peptides binding to nAbs using microscale thermophoresis revealed a higher affinity (35 nM) for the S2WT sequence (GSTPCNGVEGFNCYF), which includes the FNCY patch. Our findings suggest that the linear RBM of SARS-CoV-2 is not an immunodominant region in vaccinated individuals. Comprehending the intricate dynamics of the humoral response, its interplay with viral evolution, and host genetics is crucial for formulating effective vaccination strategies, targeting not only SARS-CoV-2 but also anticipating potential future coronaviruses.

2.
Vaccines (Basel) ; 11(12)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38140154

RESUMEN

BACKGROUND: The newly introduced COVID-19 vaccines have reduced disease severity and hospitalizations. However, they do not significantly prevent infection or transmission. In the same context, measuring IgM and IgG antibody levels is important, but it does not provide information about the status of the mucosal immune response. This article describes a comprehensive mapping of IgA epitopes of the S protein, its cross-reactivity, and the development of an ELISA-peptide assay. METHODS: IgA epitope mapping was conducted using SPOT synthesis and sera from RT-qPCR COVID-19-positive patients. Specific and cross-reacting epitopes were identified, and an evolutionary analysis from the early Wuhan strain to the Omicron variant was performed using bioinformatics tools and a microarray of peptides. The selected epitopes were chemically synthesized and evaluated using ELISA-IgA. RESULTS: A total of 40 IgA epitopes were identified with 23 in S1 and 17 in the S2 subunit. Among these, at least 23 epitopes showed cross-reactivity with DENV and other organisms and 24 showed cross-reactivity with other associated coronaviruses. Three MAP4 polypeptides were validated by ELISA, demonstrating a sensitivity of 90-99.96% and a specificity of 100%. Among the six IgA-RBD epitopes, only the SC/18 epitope of the Omicron variants (BA.2 and BA.2.12.1) presented a single IgA epitope. CONCLUSIONS: This research unveiled the IgA epitome of the S protein and identified many epitopes that exhibit cross-reactivity with DENV and other coronaviruses. The S protein of variants from Wuhan to Omicron retains many conserved IgA epitopes except for one epitope (#SCov/18). The cross-reactivity with DENV suggests limitations in using the whole S protein or the S1/S2/RBD segment for IgA serological diagnostic tests for COVID-19. The expression of these identified specific epitopes as diagnostic biomarkers could facilitate monitoring mucosal immunity to COVID-19, potentially leading to more accurate diagnoses and alternative mucosal vaccines.

3.
Mem Inst Oswaldo Cruz ; 118: e230116, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37878831

RESUMEN

BACKGROUND: The Global Virome Project (GVP) was proposed in 2018 as an evolution of the USAID PREDICT project and was presented as a "collaborative scientific initiative to discover zoonotic viral threats and stop future pandemics". The immediate response was mixed, with public health and scientific communities representatives showing skepticism, if not direct opposition. OBJECTIVES: The economic, social, and health consequences of the coronavirus disease 2019 (COVID-19) pandemic demonstrated how unprepared the world was in the face of new pandemics. This paper analyses the impact of the GVP on the scientific and public health communities. METHODS: Published scientific articles that cited the two 2018 seminal publications proposing the project were analysed using social network analysis methods. FINDINGS: Encompassing the periods before and after the onset of the Covid-19 pandemic, the results indicate that (i) the concepts of the GVP have received more support than opposition in the scientific literature; (ii) its foundations should be updated to address the specific criticisms. MAIN CONCLUSIONS: Shifting focus to national virome projects can provide tangible, regional benefits that can positively contribute towards a consensus on achieving a high level of preparedness for the ever-present possibility of the following global viral pandemic.


Asunto(s)
COVID-19 , Pandemias , Humanos , Pandemias/prevención & control , Análisis de Redes Sociales , Viroma , COVID-19/prevención & control
4.
Genomics Inform ; 21(3): e34, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37813630

RESUMEN

Nosocomial infections, commonly referred to as healthcare-associated infections, are illnesses that patients get while hospitalized and are typically either not yet manifest or may develop. One of the most prevalent nosocomial diseases in hospitalized patients is pneumonia, among the leading causes of mortality and morbidity. Viral, bacterial, and fungal pathogens cause pneumonia. More severe introductions commonly included Staphylococcus aureus, which is at the top of bacterial infections, per World Health Organization reports. The staphylococci, S. aureus, strain RMI-014804, mesophile, on-sporulating, and non-motile bacterium, was isolated from the sputum of a pulmonary patient in Pakistan. Many characteristics of S. aureus strain RMI-014804 have been revealed in this paper, with complete genome sequence and annotation. Our findings indicate that the genome is a single circular 2.82 Mbp long genome with 1,962 protein-coding genes, 15 rRNA, 49 tRNA, 62 pseudogenes, and a GC content of 28.76%. As a result of this genome sequencing analysis, researchers will fully understand the genetic and molecular basis of the virulence of the S. aureus bacteria, which could help prevent the spread of nosocomial infections like pneumonia. Genome analysis of this strain was necessary to identify the specific genes and molecular mechanisms that contribute to its pathogenicity, antibiotic resistance, and genetic diversity, allowing for a more in-depth investigation of its pathogenesis to develop new treatments and preventive measures against infections caused by this bacterium.

6.
Pharmaceuticals (Basel) ; 16(9)2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37765087

RESUMEN

The rise in antibiotic-resistant strains of clinically important pathogens is a major threat to global health. The World Health Organization (WHO) has recognized the urgent need to develop alternative treatments to address the growing list of priority pathogens. Antimicrobial peptides (AMPs) rank among the suggested options with proven activity and high potential to be developed into effective drugs. Many AMPs are naturally produced by living organisms protecting the host against pathogens as a part of their innate immunity. Mechanisms associated with AMP actions include cell membrane disruption, cell wall weakening, protein synthesis inhibition, and interference in nucleic acid dynamics, inducing apoptosis and necrosis. Acinetobacter baumannii is a critical pathogen, as severe clinical implications have developed from isolates resistant to current antibiotic treatments and conventional control procedures, such as UV light, disinfectants, and drying. Here, we review the natural AMPs representing primary candidates for new anti-A. baumannii drugs in post-antibiotic-era and present computational tools to develop the next generation of AMPs with greater microbicidal activity and reduced toxicity.

8.
Front Physiol ; 14: 1203472, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37565145

RESUMEN

Long COVID-19 is a condition characterized by persistent symptoms lasting beyond the acute phase of COVID-19. Long COVID-19 produces diverse symptomatology and can impact organs and systems, including the hematological system. Several studies have reported, in COVID-19 patients, hematological abnormalities. Most of these alterations are associated with a higher risk of severe disease and poor outcomes. This literature review identified studies reporting hematological parameters in individuals with Long COVID-19. Findings suggest that Long COVID-19 is associated with a range of sustained hematological alterations, including alterations in red blood cells, anemia, lymphopenia, and elevated levels of inflammatory markers such as ferritin, D-dimer, and IL-6. These alterations may contribute to a better understanding of the pathophysiology of Long COVID-19 and its associated symptoms. However, further research is needed to elucidate the underlying mechanisms and potential treatments for these hematological changes in individuals with Long COVID-19.

9.
Funct Integr Genomics ; 23(3): 254, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37495774

RESUMEN

Staphylococcus sciuri (also currently Mammaliicoccus sciuri) are anaerobic facultative and non-motile bacteria that cause significant human pathogenesis such as endocarditis, wound infections, peritonitis, UTI, and septic shock. Methicillin-resistant S. sciuri (MRSS) strains also infects animals that include healthy broilers, cattle, dogs, and pigs. The emergence of MRSS strains thereby poses a serious health threat and thrives the scientific community towards novel treatment options. Herein, we investigated the druggable genome of S. sciuri by employing subtractive genomics that resulted in seven genes/proteins where only three of them were predicted as final targets. Further mining the literature showed that the ArgS (WP_058610923), SecY (WP_058611897), and MurA (WP_058612677) are involved in the multi-drug resistance phenomenon. After constructing and verifying the 3D protein homology models, a screening process was carried out using a library of Traditional Chinese Medicine compounds (consisting of 36,043 compounds). The molecular docking and simulation studies revealed the physicochemical stability parameters of the docked TCM inhibitors in the druggable cavities of each protein target by identifying their druggability potential and maximum hydrogen bonding interactions. The simulated receptor-ligand complexes showed the conformational changes and stability index of the secondary structure elements. The root mean square deviation (RMSD) graph showed fluctuations due to structural changes in the helix-coil-helix and beta-turn-beta changes at specific points where the pattern of the RMSD and root mean square fluctuation (RMSF) (< 1.0 Å) support any major domain shifts within the structural framework of the protein-ligand complex and placement of ligand was well complemented within the binding site. The ß-factor values demonstrated instability at few points while the radius of gyration for structural compactness as a time function for the 100-ns simulation of protein-ligand complexes showed favorable average values and denoted the stability of all complexes. It is assumed that such findings might facilitate researchers to robustly discover and develop effective therapeutics against S. sciuri alongside other enteric infections.


Asunto(s)
Antibacterianos , Pollos , Humanos , Animales , Bovinos , Porcinos , Perros , Antibacterianos/farmacología , Simulación del Acoplamiento Molecular , Ligandos , Farmacorresistencia Bacteriana/genética , Genómica
10.
Toxins (Basel) ; 15(4)2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-37104177

RESUMEN

Tetanus is an acute, fatal disease caused by exotoxins released from Clostridium tetani during infections. A protective humoral immune response can be induced by vaccinations with pediatric and booster combinatorial vaccines that contain inactivated tetanus neurotoxin (TeNT) as a major antigen. Although some epitopes in TeNT have been described using various approaches, a comprehensive list of its antigenic determinants that are involved with immunity has not been elucidated. To this end, a high-resolution analysis of the linear B-cell epitopes in TeNT was performed using antibodies generated in vaccinated children. Two hundred sixty-four peptides that cover the entire coding sequence of the TeNT protein were prepared in situ on a cellulose membrane through SPOT synthesis and probed with sera from children vaccinated (ChVS) with a triple DTP-vaccine to map continuous B-cell epitopes, which were further characterized and validated using immunoassays. Forty-four IgG epitopes were identified. Four (TT-215-218) were chemically synthesized as multiple antigen peptides (MAPs) and used in peptide ELISAs to screen post-pandemic DTP vaccinations. The assay displayed a high performance with high sensitivity (99.99%) and specificity (100%). The complete map of linear IgG epitopes induced by vaccination with inactivated TeNT highlights three key epitopes involved in the efficacy of the vaccine. Antibodies against epitope TT-8/G can block enzymatic activity, and those against epitopes TT-41/G and TT-43/G can interfere with TeNT binding to neuronal cell receptors. We further show that four of the epitopes identified can be employed in peptide ELISAs to assess vaccine coverage. Overall, the data suggest a set of select epitopes to engineer new, directed vaccines.


Asunto(s)
Epítopos de Linfocito B , Tétanos , Humanos , Niño , Mapeo Epitopo , Tétanos/prevención & control , Péptidos , Vacunación , Inmunoglobulina G
11.
BMC Microbiol ; 23(1): 25, 2023 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-36681806

RESUMEN

Typhoid fever is transmitted by ingestion of polluted water, contaminated food, and stool of typhoid-infected individuals, mostly in developing countries with poor hygienic environments. To find novel therapeutic targets and inhibitors, We employed a subtractive genomics strategy towards Salmonella Typhi and the complete genomes of eight strains were primarily subjected to the EDGAR tool to predict the core genome (n = 3207). Human non-homology (n = 2450) was followed by essential genes identification (n = 37). The STRING database predicted maximum protein-protein interactions, followed by cellular localization. The virulent/immunogenic ability of predicted genes were checked to differentiate drug and vaccine targets. Furthermore, the 3D models of the identified putative proteins encoded by the respective genes were constructed and subjected to druggability analyses where only "highly druggable" proteins were selected for molecular docking and simulation analyses. The putative targets ATP-dependent CLP protease proteolytic subunit, Imidazole glycerol phosphate synthase hisH, 7,8-dihydropteroate synthase folP and 2,3-bisphosphoglycerate-independent phosphoglycerate mutase gpmI were screened against a drug-like library (n = 12,000) and top hits were selected based on H-bonds, RMSD and energy scores. Finally, the ADMET properties for novel inhibitors ZINC19340748, ZINC09319798, ZINC00494142, ZINC32918650 were optimized followed by binding free energy (MM/PBSA) calculation for ligand-receptor complexes. The findings of this work are expected to aid in expediting the identification of novel protein targets and inhibitors in combating typhoid Salmonellosis, in addition to the already existing therapies.


Asunto(s)
Antibacterianos , Salmonella typhi , Humanos , Antibacterianos/farmacología , Antibacterianos/química , Endopeptidasa Clp , Genómica , Simulación del Acoplamiento Molecular , Salmonella typhi/efectos de los fármacos , Salmonella typhi/genética , Fiebre Tifoidea
12.
Mol Divers ; 27(6): 2823-2847, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36567421

RESUMEN

Burkholderia cepacia complex (BCC) is a group of gram-negative bacteria composed of at least 20 different species that cause diseases in plants, animals as well as humans (cystic fibrosis and airway infection). Here, we analyzed the proteomic data of 47 BCC strains by classifying them in three groups. Phylogenetic analyses were performed followed by individual core region identification for each group. Comparative analysis of the three individual core protein fractions resulted in 1766 ortholog/proteins. Non-human homologous proteins from the core region gave 1680 proteins. Essential protein analyses reduced the target list to 37 proteins, which were further compared to a closely related out-group, Burkholderia gladioli ATCC 10,248 strain, resulting in 21 proteins. 3D structure modeling, validation, and druggability step gave six targets that were subjected to further target prioritization parameters which ultimately resulted in two BCC targets. A library of 12,000 ZINC drug-like compounds was screened, where only the top hits were selected for docking orientations. These included ZINC01405842 (against Chorismate synthase aroC) and ZINC06055530 (against Bifunctional N-acetylglucosamine-1-phosphate uridyltransferase/Glucosamine-1-phosphate acetyltransferase glmU). Finally, dynamics simulation (200 ns) was performed for each ligand-receptor complex, followed by ADMET profiling. Of these targets, details of their applicability as drug targets have not yet been elucidated experimentally, hence making our predictions novel and it is suggested that further wet-lab experimentations should be conducted to test the identified BCC targets and ZINC scaffolds to inhibit them.


Asunto(s)
Complejo Burkholderia cepacia , Animales , Complejo Burkholderia cepacia/genética , Filogenia , Proteómica , Análisis de Secuencia , Zinc
13.
Mem. Inst. Oswaldo Cruz ; 118: e230116, 2023. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1521241

RESUMEN

BACKGROUND The Global Virome Project (GVP) was proposed in 2018 as an evolution of the USAID PREDICT project and was presented as a "collaborative scientific initiative to discover zoonotic viral threats and stop future pandemics". The immediate response was mixed, with public health and scientific communities representatives showing skepticism, if not direct opposition. OBJECTIVES The economic, social, and health consequences of the coronavirus disease 2019 (COVID-19) pandemic demonstrated how unprepared the world was in the face of new pandemics. This paper analyses the impact of the GVP on the scientific and public health communities. METHODS Published scientific articles that cited the two 2018 seminal publications proposing the project were analysed using social network analysis methods. FINDINGS Encompassing the periods before and after the onset of the Covid-19 pandemic, the results indicate that (i) the concepts of the GVP have received more support than opposition in the scientific literature; (ii) its foundations should be updated to address the specific criticisms. MAIN CONCLUSIONS Shifting focus to national virome projects can provide tangible, regional benefits that can positively contribute towards a consensus on achieving a high level of preparedness for the ever-present possibility of the following global viral pandemic.

14.
Mem Inst Oswaldo Cruz ; 117: e200314, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35544856

RESUMEN

This review does not intend to convey detailed experimental or bibliographic data. Instead, it expresses the informal authors' personal views on topics that range from basic research on antigens and experimental models for Trypanosoma cruzi infection to vaccine prospects and vaccine production. The review also includes general aspects of Chagas' disease control and international and national policies on the subject. The authors contributed equally to the paper.


Asunto(s)
Enfermedad de Chagas , Trypanosoma cruzi , Vacunas , Antígenos , Enfermedad de Chagas/prevención & control , Humanos
15.
Biosensors (Basel) ; 12(5)2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35624573

RESUMEN

BACKGROUND: The coronavirus disease of 2019 (COVID-19) is caused by an infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It was recognized in late 2019 and has since spread worldwide, leading to a pandemic with unprecedented health and financial consequences. There remains an enormous demand for new diagnostic methods that can deliver fast, low-cost, and easy-to-use confirmation of a SARS-CoV-2 infection. We have developed an affordable electrochemical biosensor for the rapid detection of serological immunoglobulin G (IgG) antibody in sera against the spike protein. MATERIALS AND METHODS: A previously identified linear B-cell epitope (EP) specific to the SARS-CoV-2 spike glycoprotein and recognized by IgG in patient sera was selected for the target molecule. After synthesis, the EP was immobilized onto the surface of the working electrode of a commercially available screen-printed electrode (SPE). The capture of SARS-CoV-2-specific IgGs allowed the formation of an immunocomplex that was measured by square-wave voltammetry from its generation of hydroquinone (HQ). RESULTS: An evaluation of the performance of the EP-based biosensor presented a selectivity and specificity for COVID-19 of 93% and 100%, respectively. No cross-reaction was observed to antibodies against other diseases that included Chagas disease, Chikungunya, Leishmaniosis, and Dengue. Differentiation of infected and non-infected individuals was possible even at a high dilution factor that decreased the required sample volumes to a few microliters. CONCLUSION: The final device proved suitable for diagnosing COVID-19 by assaying actual serum samples, and the results displayed good agreement with the molecular biology diagnoses. The flexibility to conjugate other EPs to SPEs suggests that this technology could be rapidly adapted to diagnose new variants of SARS-CoV-2 or other pathogens.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Anticuerpos Antivirales , COVID-19/diagnóstico , Electrodos , Epítopos , Glicoproteínas , Humanos , Inmunoglobulina G , SARS-CoV-2
16.
Microbiome ; 10(1): 65, 2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35459226

RESUMEN

BACKGROUND: Critically ill 2019 coronavirus disease (COVID-19) patients under invasive mechanical ventilation (IMV) are 10 to 40 times more likely to die than the general population. Although progression from mild to severe COVID-19 has been associated with hypoxia, uncontrolled inflammation, and coagulopathy, the mechanisms involved in the progression to severity are poorly understood. METHODS: The virome of tracheal aspirates (TA) from 25 COVID-19 patients under IMV was assessed through unbiased RNA sequencing (RNA-seq), and correlation analyses were conducted using available clinical data. Unbiased sequences from nasopharyngeal swabs (NS) from mild cases and TA from non-COVID patients were included in our study for further comparisons. RESULTS: We found higher levels and differential expression of human endogenous retrovirus K (HERV-K) genes in TA from critically ill and deceased patients when comparing nasopharyngeal swabs from mild cases to TA from non-COVID patients. In critically ill patients, higher HERV-K levels were associated with early mortality (within 14 days of diagnosis) in the intensive care unit. Increased HERV-K expression in deceased patients was associated with IL-17-related inflammation, monocyte activation, and an increased consumption of clotting/fibrinolysis factors. Moreover, increased HERV-K expression was detected in human primary monocytes from healthy donors after experimental SARS-CoV-2 infection in vitro. CONCLUSION: Our data implicate the levels of HERV-K transcripts in the physiopathology of COVID-19 in the respiratory tract of patients under invasive mechanical ventilation. Video abstract.


Asunto(s)
COVID-19 , Retrovirus Endógenos , Enfermedad Crítica , Retrovirus Endógenos/genética , Humanos , Inflamación , Sistema Respiratorio , SARS-CoV-2
17.
Mem Inst Oswaldo Cruz ; 117: e200277, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35442291

RESUMEN

In a previous publication, I stressed the fundamental importance of research for improving health using as an example the control of Chagas disease in the Americas.(1) For that purpose, I analysed the major scientific breakthroughs and public health events from the 1909 discovery of Chagas disease and its causative pathogen, Trypanosoma cruzi, by Carlos Chagas,(2) through the successful control of its transmission by insect vectors in large regions of the Southern Cone countries in the 90s.(3) In the twenty years since that publication, Brazil and Latin American countries had to cope with a number of serious public health threats, old and new: (i) recrudescence of well-known diseases, such as dengue and yellow fever; (ii) emergence of viral diseases that had been restricted to other continents (Zika, Chikungunya); (iii) new epidemics (H1N1) or (iv) pandemics (COVID-19). Are there still some lessons from that success story against a neglected disease of the 90s that would be relevant today in the context of these recent challenges?


Asunto(s)
COVID-19 , Enfermedad de Chagas , Subtipo H1N1 del Virus de la Influenza A , Trypanosoma cruzi , Infección por el Virus Zika , Virus Zika , Humanos , Enfermedades Desatendidas , Infección por el Virus Zika/epidemiología
18.
Int J Mol Sci ; 23(7)2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35409149

RESUMEN

Hemopexin (Hx) is a plasma glycoprotein that scavenges heme (Fe(III) protoporphyrin IX). Hx has important implications in hemolytic disorders and hemorrhagic conditions because releasing hemoglobin increases the labile heme, which is potentially toxic, thus producing oxidative stress. Therefore, Hx has been considered for therapeutic use and diagnostics. In this work, we analyzed and mapped the interaction sequences of Hx with hemin and hemoglobin. The spot-synthesis technique was used to map human hemopexin (P02790) binding to hemin and human hemoglobin. A library of 15 amino acid peptides with a 10-amino acid overlap was designed to represent the entire coding region (aa 1-462) of hemopexin and synthesized onto cellulose membranes. An in silico approach was taken to analyze the amino acid frequency in the identified interaction regions, and molecular docking was applied to assess the protein-protein interaction. Seven linear peptide sequences in Hx were identified to bind hemin (H1-H7), and five were described for Hb (Hb1-Hb5) interaction, with just two sequences shared between hemin and Hb. The amino acid composition of the identified sequences demonstrated that histidine residues are relevant for heme binding. H105, H293, H373, H400, H429, and H462 were distributed in the H1-H7 peptide sequences, but other residues may also play an important role. Molecular docking analysis demonstrated Hx's association with the ß-chain of Hb, with several hotspot amino acids that coordinated the interaction. This study provides new insights into Hx-hemin binding motifs and protein-protein interactions with Hb. The identified binding sequences and specific peptides can be used for therapeutic purposes and diagnostics as hemopexin is under investigation to treat different diseases and there is an urgent need for diagnostics using labile heme when monitoring hemolysis.


Asunto(s)
Hemina , Hemopexina , Compuestos Férricos , Hemo/metabolismo , Hemina/metabolismo , Hemoglobinas/metabolismo , Hemólisis , Hemopexina/metabolismo , Histidina , Humanos , Simulación del Acoplamiento Molecular
20.
Int J Mol Sci ; 24(1)2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36613974

RESUMEN

Oral immunization with the choleric toxin (CT) elicits a high level of protection against its enterotoxin activities and can control cholera in endemic settings. However, the complete B-cell epitope map of the CT that is responsible for protection remains to be clarified. A library of one-hundred, twenty-two 15-mer peptides covering the entire sequence of the three chains of the CT protein (CTP) was prepared by SPOT synthesis. The immunoreactivity of membrane-bound peptides with sera from mice vaccinated with an oral inactivated vaccine (Schankol™) allowed the mapping of continuous B-cell epitopes, topological studies, multi-antigen peptide (MAP) synthesis, and Enzyme-Linked Immunosorbent Assay (ELISA) development. Eighteen IgG epitopes were identified; eight in the CTA, three in the CTB, and seven in the protein P. Three V. cholera specific epitopes, Vc/TxA-3, Vc/TxB-11, and Vc/TxP-16, were synthesized as MAP4 and used to coat ELISA plates in order to screen immunized mouse sera. Sensitivities and specificities of 100% were obtained with the MAP4s of Vc/TxA-3 and Vc/TxB-11. The results revealed a set of peptides whose immunoreactivity reflects the immune response to vaccination. The array of peptide data can be applied to develop improved serological tests in order to detect cholera toxin exposure, as well as next generation vaccines to induce more specific antibodies against the cholera toxin.


Asunto(s)
Vacunas contra el Cólera , Cólera , Vibrio cholerae , Animales , Ratones , Vibrio cholerae/metabolismo , Toxina del Cólera/metabolismo , Epítopos de Linfocito B , Mapeo Epitopo , Ensayo de Inmunoadsorción Enzimática , Anticuerpos Antibacterianos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...