Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2566: 261-268, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36152258

RESUMEN

In some specific vascular plant tissues, lignin can impregnate the entire cell wall to make it more rigid and hydrophobic. Different techniques have been developed in the past years to make possible the quantification of this polyphenolic polymer at the organ or tissue level, but difficulties of access to the cellular level remain. Here we describe an approach based on ratiometric emission measurements using safranin-O and the development of a macro adapted for the FIJI software, which makes it possible to quantify lignin in three different layers of the cell wall on images captured on a fluorescent confocal microscope.


Asunto(s)
Lignina , Fenazinas , Pared Celular/química , Colorantes/análisis , Lignina/química , Fenazinas/análisis , Coloración y Etiquetado
2.
Tree Physiol ; 42(5): 1084-1099, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-34865151

RESUMEN

Reactive species (RS) causing oxidative stress are unavoidable by-products of various plant metabolic processes, such as photosynthesis, respiration or photorespiration. In leaves, flavonoids scavenge RS produced during photosynthesis and protect plant cells against deleterious oxidative damages. Their biosynthesis and accumulation are therefore under tight regulation at the cellular level. Glycosylation has emerged as an essential biochemical reaction in the homeostasis of various specialized metabolites such as flavonoids. This article provides a functional characterization of the Populus tremula x P. alba (poplar) UGT72A2 coding for a UDP-glycosyltransferase that is localized in the chloroplasts. Compared with the wild type, transgenic poplar lines with decreased expression of UGT72A2 are characterized by reduced growth and oxidative damages in leaves, as evidenced by necrosis, higher content of glutathione and lipid peroxidation products as well as diminished soluble peroxidase activity and NADPH to NADP+ ratio under standard growing conditions. They furthermore display lower pools of phenolics, anthocyanins and total flavonoids but higher proanthocyanidins content. Promoter analysis revealed the presence of cis-elements involved in photomorphogenesis, chloroplast biogenesis and flavonoid biosynthesis. The UGT72A2 is regulated by the poplar MYB119, a transcription factor known to regulate the flavonoid biosynthesis pathway. Phylogenetic analysis and molecular docking suggest that UGT72A2 could glycosylate flavonoids; however, the actual substrate(s) was not consistently evidenced with either in vitro assays nor analyses of glycosylated products in leaves of transgenic poplar overexpressing or downregulated for UGT72A2. This article provides elements highlighting the importance of flavonoid glycosylation regarding protection against oxidative stress in poplar leaves and raises new questions about the link between this biochemical reaction and regulation of the redox homeostasis system.


Asunto(s)
Populus , Antocianinas/metabolismo , Regulación hacia Abajo , Flavonoides/metabolismo , Regulación de la Expresión Génica de las Plantas , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Simulación del Acoplamiento Molecular , Necrosis , Filogenia , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Populus/genética , Populus/metabolismo
3.
Plant Physiol ; 188(2): 816-830, 2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-34687294

RESUMEN

This article describes a methodology for detailed mapping of the lignification capacity of plant cell walls that we have called "REPRISAL" for REPorter Ratiometrics Integrating Segmentation for Analyzing Lignification. REPRISAL consists of the combination of three separate approaches. In the first approach, H*, G*, and S* monolignol chemical reporters, corresponding to p-coumaryl alcohol, coniferyl alcohol, and sinapyl alcohol, are used to label the growing lignin polymer in a fluorescent triple labeling strategy based on the sequential use of three main bioorthogonal chemical reactions. In the second step, an automatic parametric and/or artificial intelligence segmentation algorithm is developed that assigns fluorescent image pixels to three distinct cell wall zones corresponding to cell corners, compound middle lamella and secondary cell walls. The last step corresponds to the exploitation of a ratiometric approach enabling statistical analyses of differences in monolignol reporter distribution (ratiometric method [RM] 1) and proportions (RM 2) within the different cell wall zones. We first describe the use of this methodology to map developmentally related changes in the lignification capacity of wild-type Arabidopsis (Arabidopsis thaliana) interfascicular fiber cells. We then apply REPRISAL to analyze the Arabidopsis peroxidase (PRX) mutant prx64 and provide further evidence for the implication of the AtPRX64 protein in floral stem lignification. In addition, we also demonstrate the general applicability of REPRISAL by using it to map lignification capacity in poplar (Populus tremula × Populus alba), flax (Linum usitatissimum), and maize (Zea mays). Finally, we show that the methodology can be used to map the incorporation of a fucose reporter into noncellulosic cell wall polymers.


Asunto(s)
Arabidopsis/fisiología , Botánica/instrumentación , Lignina/fisiología , Arabidopsis/genética , Botánica/métodos , Pared Celular/fisiología , Lignina/genética , Células Vegetales/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA