Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Front Neurol ; 15: 1362013, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38572490

RESUMEN

Alexander disease (AxD) is a rare inherited autosomal dominant (AD) disease with different clinical phenotypes according to the age of onset. It is caused by mutations in the glial fibrillary acid protein (GFAP) gene, which causes GFAP accumulation in astrocytes. A wide spectrum of mutations has been described. For some variants, genotype-phenotype correlations have been described, although variable expressivity has also been reported in late-onset cases among members of the same family. We present the case of a 19-year-old girl who developed gait ataxia and subtle involuntary movements, preceded by a history of enuresis and severe scoliosis. Her mother has been affected by ataxia since her childhood, which was then complicated by pyramidal signs and heavily worsened through the years. Beyond her mother, no other known relatives suffered from neurologic syndromes. The scenario was further complicated by a complex brain and spinal cord magnetic resonance imaging (MRI) pattern in both mother and daughter. However, the similar clinical phenotype made an inherited cause highly probable. Both AD and autosomal recessive (AR) ataxic syndromes were considered, lacking a part of the proband's pedigree, but no causative genetic alterations were found. Considering the strong suspicion for an inherited condition, we performed clinical exome sequencing (CES), which analyzes more than 4,500 genes associated with diseases. CES evidenced the new heterozygous missense variant c.260 T > A in exon 1 of the glial fibrillary acidic protein (GFAP) gene (NM_002055.4), which causes the valine to aspartate amino acid substitution at codon 87 (p. Val87Asp) in the GFAP. The same heterozygous variant was detected in her mother. This mutation has never been described before in the literature. This case should raise awareness for this rare and under-recognized disease in juvenile-adult cases.

2.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37047023

RESUMEN

Huntington's disease (HD) is characterized by clinical motor impairment (e.g., involuntary movements, poor coordination, parkinsonism), cognitive deficits, and psychiatric symptoms. An inhered expansion of the CAG triplet in the huntingtin gene causing a pathogenic gain-of-function of the mutant huntingtin (mHTT) protein has been identified. In this review, we focus on known biomarkers (e.g., mHTT, neurofilament light chains) and on new biofluid biomarkers that can be quantified in plasma or peripheral blood mononuclear cells from mHTT carriers. Circulating biomarkers may fill current unmet needs in HD management: better stratification of patients amenable to etiologic treatment; the initiation of preventive treatment in premanifest HD; and the identification of peripheral pathogenic central nervous system cascades.


Asunto(s)
Trastornos del Conocimiento , Disfunción Cognitiva , Enfermedad de Huntington , Humanos , Enfermedad de Huntington/diagnóstico , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Leucocitos Mononucleares/metabolismo , Trastornos del Conocimiento/etiología , Biomarcadores , Disfunción Cognitiva/complicaciones , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo
3.
Artículo en Inglés | MEDLINE | ID: mdl-36229188

RESUMEN

BACKGROUND AND OBJECTIVES: Recent imaging studies have suggested a possible involvement of the choroid plexus (CP) in multiple sclerosis (MS). Here, we investigated whether CP changes are already detectable at the earliest stage of MS, preceding symptom onset. METHODS: This study is a retrospective analysis of 27 patients with presymptomatic MS, 97 patients with clinically definite MS (CDMS), and 53 healthy controls (HCs) who underwent a cross-sectional 3T-MRI acquisition; of which, 22 MS, 19 HCs, and 1 presymptomatic MS (evaluated 8 months before conversion to CDMS) also underwent translocator protein (TSPO) 18F-DPA-714 PET and were included in the analysis. CPs were manually segmented on 3D T1-weighted images for volumetric analysis. CP 18F-DPA-714 uptake, reflecting inflammation, was calculated as the average standardized uptake value (SUV). Multivariable regressions adjusted for age, sex, and ventricular and brain volume were fitted to test CP volume differences between presymptomatic patients and MS or HCs. For the presymptomatic case who also had 18F-DPA-714 PET, CP SUV differences with MS and HCs were assessed through Crawford-Howell tests. To provide further insight into the interpretation of 18F-DPA-714-PET uptake at the CP level, a postmortem analysis of CPs in MS vs HCs was performed to characterize the cellular localization of TSPO expression. RESULTS: Compared with HCs, patients with presymptomatic MS had 32% larger CPs (ß = 0.38, p = 0.001), which were not dissimilar to MS CPs (p = 0.69). Moreover, in the baseline scan of the presymptomatic case who later on developed MS, TSPO PET showed 33% greater CP inflammation vs HCs (p = 0.04), although no differences in 18F-DPA-714 uptake were found in parenchymal regions vs controls. CP postmortem analysis identified a population of CD163+ mononuclear phagocytes expressing TSPO in MS, possibly contributing to the increased 18F-DPA-714 uptake. DISCUSSION: We identified an imaging signature in CPs at the presymptomatic MS stage using MRI; in addition, we found an increased CP inflammation with PET in a single presymptomatic patient. These findings suggest a role of CP imaging as an early biomarker and argue for the involvement of the blood-CSF barrier dysfunction in disease development. TRIAL REGISTRATION INFORMATION: APHP-20210727144630, EudraCT-Number: 2008-004174-40; ClinicalTrials.gov: NCT02305264, NCT01651520, and NCT02319382.


Asunto(s)
Esclerosis Múltiple , Biomarcadores , Proteínas Portadoras , Coroides/metabolismo , Plexo Coroideo/diagnóstico por imagen , Ensayos Clínicos como Asunto , Estudios Transversales , Femenino , Humanos , Inflamación/metabolismo , Masculino , Esclerosis Múltiple/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Receptores de GABA/metabolismo , Estudios Retrospectivos
4.
Int J Mol Sci ; 23(20)2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36293304

RESUMEN

Plasma small RNAs have been recently explored as biomarkers in Huntington's disease (HD). We performed an exploratory study on nine HD patients, eight healthy subjects (HS), and five psychiatric patients (PP; to control for iatrogenic confounder effects) through an Affymetrix-Gene-Chip-miRNA-Array. We validated the results in an independent population of 23 HD, 15 pre-HD, 24 PP, 28 Alzheimer's disease (AD) patients (to control the disease-specificity) and 22 HS through real-time PCR. The microarray results showed higher levels of U13 small nucleolar RNA (SNORD13) in HD patients than controls (fold change 1.54, p = 0.003 HD vs. HS, and 1.44, p = 0.0026 HD vs. PP). In the validation population, a significant increase emerged with respect to both pre-HD and the control groups (p < 0.0001). SNORD13 correlated with the status of the mutant huntingtin carrier (r = 0.73; p < 0.001) and the disease duration (r = 0.59; p = 0.003). The receiver operating characteristic (ROC) curve analysis showed the high accuracy of SNORD13 in discriminating HD patients from other groups (AUC = 0.963). An interactome and pathway analysis on SNORD13 revealed enrichments for factors relevant to HD pathogenesis. We report the unprecedented finding of a potential disease-specific role of SNORD13 in HD. It seems to peripherally report a 'tipping point' in the pathogenic cascade at the neuronal level.


Asunto(s)
Enfermedad de Huntington , MicroARNs , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , ARN Nucleolar Pequeño/genética , Proyectos Piloto , Proteína Huntingtina/genética , Biomarcadores
5.
Sci Rep ; 12(1): 7536, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35534508

RESUMEN

A clinically actionable understanding of multiple sclerosis (MS) etiology goes through GWAS interpretation, prompting research on new gene regulatory models. Our previous investigations suggested heterogeneity in etiology components and stochasticity in the interaction between genetic and non-genetic factors. To find a unifying model for this evidence, we focused on the recently mapped transient transcriptome (TT), that is mostly coded by intergenic and intronic regions, with half-life of minutes. Through a colocalization analysis, here we demonstrate that genomic regions coding for the TT are significantly enriched for MS-associated GWAS variants and DNA binding sites for molecular transducers mediating putative, non-genetic, determinants of MS (vitamin D deficiency, Epstein Barr virus latent infection, B cell dysfunction), indicating TT-coding regions as MS etiopathogenetic hotspots. Future research comparing cell-specific transient and stable transcriptomes may clarify the interplay between genetic variability and non-genetic factors causing MS. To this purpose, our colocalization analysis provides a freely available data resource at www.mscoloc.com .


Asunto(s)
Infecciones por Virus de Epstein-Barr , Esclerosis Múltiple , Deficiencia de Vitamina D , Herpesvirus Humano 4/genética , Humanos , Esclerosis Múltiple/genética , Transcriptoma
6.
Front Neurol ; 13: 787160, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35359637

RESUMEN

Following the extraordinary progress in the treatment of multiple sclerosis (MS), two major unmet needs remain: understanding the etiology of the disease and, hence, designing definitive cures (this perspective is neither at hand, nor it can be taken for granted that the etiologic targets will be readily treatable); the prevention of an overt and disabling disease, which seems to be a more realistic and pragmatic perspective, as the integration of genetic data with endophenotypes, MRI, and other biomarkers ameliorates our ability to identify early neuroinflammation. Radiologically isolated syndrome (RIS; diagnosed when the unanticipated MRI finding of brain spatial dissemination of focal white matter lesions highly suggestive of MS occurs in subjects without symptoms of MS, and with normal neurological examinations) and the recently focused "prodromal MS" are conditions at risk of conversion toward overt disease. Here, we explore the possibility of secondary prevention approaches in these early stages of neuroinflammation. RIS and prodromal MS are rare conditions, which suggest the importance of Study Groups and Disease Registry to implement informative clinical trials. We summarize ongoing preventive approaches in the early stages of the demyelinating process, especially in RIS conditions. Moreover, we highlight the importance of the biomarkers and the predictors of evolution to overt disease, which may be useful to select the individuals at risk of conversion to clinically isolated syndrome (CIS) and/or clinically definite MS. Finally, we illustrate the importance of the endophenotypes to test the frontline immunomodulatory approach for preventive strategies. Future investigations, especially in relatives of patients, based on MRI techniques and biological studies (better with integrated approaches) may provide opportunities to understand the MS early causal cascade and may help to identify a "therapeutic window" to potentially reverse early disease processes.

7.
Front Neurol ; 13: 829331, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35356454

RESUMEN

Multiple sclerosis (MS), an inflammatory demyelinating and neurodegenerative disease of the central nervous system, usually begins between the ages of 20 and 49 years, though in rare cases it is diagnosed in childhood and adolescence before the age of 18 years, or at the age of 50 years and later. When the onset of the disease occurs at 50 years or older it is conventionally defined as late onset MS (LOMS). Compared to classical MS, the LOMS is characterized by progressive course, a greater delay in diagnosis and a higher prevalence of motor disability. The older the patients, the greater is the risk of comorbidities that can negatively influence the course of the disease and can limit therapeutic strategies. To date, there is no study focused on the efficacy of Disease Modifying Therapies (DMT) in older patients with MS. The only data available are retrievable from subgroup analysis from phase-3 trials of DMT efficacy. In this work, we discuss how the aging process influences the onset, the clinical course and the therapeutic approach in LOMS.

8.
Front Immunol ; 12: 755333, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34646278

RESUMEN

Current knowledge on Multiple Sclerosis (MS) etiopathogenesis encompasses complex interactions between the host's genetic background and several environmental factors that result in dysimmunity against the central nervous system. An old-aged association exists between MS and viral infections, capable of triggering and sustaining neuroinflammation through direct and indirect mechanisms. The novel Coronavirus, SARS-CoV-2, has a remarkable, and still not fully understood, impact on the immune system: the occurrence and severity of both acute COVID-19 and post-infectious chronic illness (long COVID-19) largely depends on the host's response to the infection, that echoes several aspects of MS pathobiology. Furthermore, other MS-associated viruses, such as the Epstein-Barr Virus (EBV) and Human Endogenous Retroviruses (HERVs), may enhance a mechanistic interplay with the novel Coronavirus, with the potential to interfere in MS natural history. Studies on COVID-19 in people with MS have helped clinicians in adjusting therapeutic strategies during the pandemic; similar efforts are being made for SARS-CoV-2 vaccination campaigns. In this Review, we look over 18 months of SARS-CoV-2 pandemic from the perspective of MS: we dissect neuroinflammatory and demyelinating mechanisms associated with COVID-19, summarize pathophysiological crossroads between MS and SARS-CoV-2 infection, and discuss present evidence on COVID-19 and its vaccination in people with MS.


Asunto(s)
COVID-19/inmunología , Esclerosis Múltiple/inmunología , SARS-CoV-2/inmunología , Animales , COVID-19/epidemiología , COVID-19/prevención & control , COVID-19/virología , Vacunas contra la COVID-19/administración & dosificación , Interacciones Huésped-Patógeno , Humanos , Esclerosis Múltiple/epidemiología , Esclerosis Múltiple/virología , Pronóstico , Factores de Riesgo , SARS-CoV-2/patogenicidad , Vacunación
9.
Front Neurol ; 12: 683398, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34512507

RESUMEN

Background: The changes of the gut-brain axis have been recently recognized as important components in multiple sclerosis (MS) pathogenesis. Objectives: To evaluate the effects of DMF on intestinal barrier permeability and mucosal immune responses. Methods: We investigated intestinal permeability (IP) and circulating CD161+CCR6+CD8+T cells in 25 patients with MS, who met eligibility criteria for dimethyl-fumarate (DMF) treatment. These data, together with clinical/MRI parameters, were studied at three time-points: baseline (before therapy), after one (T1) and 9 months (T2) of treatment. Results: At baseline 16 patients (64%) showed altered IP, while 14 cases (56%) showed active MRI. During DMF therapy we found the expected decrease of disease activity at MRI compared to T0 (6/25 at T1, p = 0.035 and 3/25 at T2, p < 0.00), and a reduction in the percentage of CD161+CCR6+CD8+ T cells (16/23 at T2; p < 0.001). The effects of DMF on gut barrier alterations was variable, without a clear longitudinal pattern, while we found significant relationships between IP changes and drop of MRI activity (p = 0.04) and circulating CD161+CCr6+CD8+ T cells (p = 0.023). Conclusions: The gut barrier is frequently altered in MS, and the CD161+ CCR6+CD8+ T cell-subset shows dynamics which correlate with disease course and therapy.

10.
Radiology ; 301(1): 166-177, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34254858

RESUMEN

Background Choroid plexuses (CPs) have been suggested as a key gateway for inflammation in experimental autoimmune encephalitis, but in vivo evidence of their involvement in multiple sclerosis (MS) is lacking. Purpose To assess CP volumetric and inflammatory changes in patients with MS versus healthy control participants. Materials and Methods This was a secondary analysis of 97 patients (61 with relapsing-remitting MS [RRMS] and 36 with progressive MS) and 44 healthy control participants who participated in three prospective 3.0-T brain MRI studies between May 2009 and September 2017. A subgroup of 37 patients and 19 healthy control participants also underwent translocator protein fluorine 18 (18F)-DPA-714 PET for neuroinflammation. Relapses and disability scores were collected at baseline and over 2 years. CPs were manually segmented on three-dimensional T1-weighted images; other brain volumes were additionally segmented. Volumes were expressed as a ratio of intracranial volume. The 18F-DPA-714 distribution volume ratio was quantified in parenchymal regions, whereas standardized uptake value was used for CP inflammation. Multivariable linear regression analyses were performed to assess CP volumetric and inflammatory differences between patients with MS and healthy control participants and correlations between CP volume and lesion load, brain volumes, 18F-DPA-714 uptake, and annualized relapse rate. Results Ninety-seven patients with MS (mean age, 42 years ± 12 [standard deviation]; 49 women) and 44 healthy control participants (mean age, 39 years ± 14; 23 women) underwent MRI. Thirty-seven patients with MS and 19 healthy control participants underwent PET. CPs were 35% larger in patients with MS (mean value, 15.9 × 10-4 ± 4.5) than in healthy control participants (mean value, 11.8 × 10-4 ± 3.8; P = .004). Subgroup analysis confirmed greater CP volume in patients with RRMS (mean value, 15.5 × 10-4 ± 4.6; P = .008) than in healthy control participants. CP enlargement was greater in patients with active lesions at MRI (mean volume, 18.2 × 10-4 ± 4.9 in patients with lesions that enhanced with gadolinium vs 14.9 × 10-4 ± 4 in patients with lesions that did not enhance with gadolinium; P < .001) and correlated with white matter lesion load (r = 0.39; 95% CI: 0.20, 0.55; P < .001) and 18F-DPA-714 binding in the thalami (r = 0.44; 95% CI: 0.22, 0.72; P = .04) and normal-appearing white matter (r = 0.5; 95% CI: 0.20, 0.71; P = .005). Moreover, it correlated with annualized relapse rate in patients with RRMS (r = 0.37; 95% CI: 0.1, 0.55; P = .005). Finally, patients with MS showed 18.5% higher CP 18F-DPA-714 uptake than control participants (mean value, 0.778 ± 0.23 vs 0.635 ± 0.15, respectively; P = .01). CP volume in patients with RRMS (r = 0.57; 95% CI: 0.37, 0.73; P = .009) correlated with higher 18F-DPA-714 uptake. Conclusion Choroid plexuses (CPs) are enlarged and inflamed in patients with multiple sclerosis (MS), particularly in those with relapsing-remitting MS with inflammatory profiles; CP volumetric analysis could represent an MS imaging marker. © RSNA, 2021 EudraCT no. 2008-004174-40; clinical trial registration nos. NCT02305264 and NCT01651520 Online supplemental material is available for this article.


Asunto(s)
Plexo Coroideo/patología , Imagen por Resonancia Magnética/métodos , Esclerosis Múltiple/patología , Tomografía de Emisión de Positrones/métodos , Receptores de GABA/genética , Adulto , Plexo Coroideo/diagnóstico por imagen , Femenino , Humanos , Inflamación/complicaciones , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/complicaciones , Esclerosis Múltiple/diagnóstico por imagen , Tamaño de los Órganos , Estudios Prospectivos
11.
Microorganisms ; 9(6)2021 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-34074025

RESUMEN

The functions of mucosal-associated invariant T (MAIT) cells in homeostatic conditions include the interaction with the microbiota and its products, the protection of body barriers, and the mounting of a tissue-repair response to injuries or infections. Dysfunction of MAIT cells and dysbiosis occur in common chronic diseases of inflammatory, metabolic, and tumor nature. This review is aimed at analyzing the changes of MAIT cells, as well as of the microbiota, in multiple sclerosis and other autoimmune disorders. Common features of dysbiosis in these conditions are the reduced richness of microbial species and the unbalance between pro-inflammatory and immune regulatory components of the gut microbiota. The literature concerning MAIT cells in these disorders is rather complex, and sometimes not consistent. In multiple sclerosis and other autoimmune conditions, several studies have been done, or are in progress, to find correlations between intestinal permeability, dysbiosis, MAIT cell responses, and clinical biomarkers in treated and treatment-naïve patients. The final aims are to explain what activates MAIT cells in diseases not primarily infective, which interactions with the microbiota are potentially pathogenic, and their dynamics related to disease course and disease-modifying treatments.

12.
Front Neurol ; 12: 657973, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34025560

RESUMEN

The momentum of gene therapy in Huntington's disease (HD) deserves biomarkers from easily accessible fluid. We planned a study to verify whether plasma miRNome may provide useful peripheral "reporter(s)" for the management of HD patients. We performed an exploratory microarray study of whole non-coding RNA profiles in plasma from nine patients with HD and 13 matched controls [eight healthy subjects (HS) and five psychiatric patients (PP) to minimize possible iatrogenic impact on the profile of non-coding RNAs]. We found an HD-specific signature: downregulation of hsa-miR-98 (fold change, -1.5, p = 0.0338 HD vs. HS, and fold change, 1.5, p = 0.0045 HD vs. PP) and upregulation of hsa-miR-323b-3p (fold change, 1.5, p = 0.0007 HD vs. HS, and fold change, 1.5, p = 0.0111 HD vs. PP). To validate this result in an independent cohort, we quantify by digital droplet PCR (ddPCR) the presence of the two microRNA in the plasma of 33 HD patients and 49 matched controls (25 HS and 24 PP patients). We were able to confirm that hsa-miR-323b-3p was upregulated in HD and premanifest HD vs. HS and PP: the median values (first-third quartile) were 4.1 (0.9-10.53) and 5.8 (1.9-10.70) vs. 0.69 (0.3-2.75) and 1.4 (0.78-2.70), respectively, p < 0.05. No significant difference was found for hsa-miR-98. To evaluate the biological plausibility of the hsa-miR-323b-3p as a component of the disease pathophysiology, we performed a bioinformatic analysis based on its targetome and the huntingtin (HTT) interactome. We found a statistically significant overconnectivity between the targetome of hsa-miR-323b-3p and the HTT interactome (p = 1.48e-08). Furthermore, there was a significant transcription regulation of the HTT interactome by the miR-323b-3p targetome (p = 0.02). The availability of handy, reproducible, and minimally invasive biomarkers coming from peripheral miRNome may be valuable to characterize the illness progression, to indicate new therapeutic targets, and to monitor the effect of disease-modifying treatments. Our data deserve further studies with larger sample size and longitudinal design.

13.
Int J Mol Sci ; 22(7)2021 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-33918133

RESUMEN

Multiple sclerosis is a complex, multifactorial, dysimmune disease prevalent in women. Its etiopathogenesis is extremely intricate, since each risk factor behaves as a variable that is interconnected with others. In order to understand these interactions, sex must be considered as a determining element, either in a protective or pathological sense, and not as one of many variables. In particular, sex seems to highly influence immune response at chromosomal, epigenetic, and hormonal levels. Environmental and genetic risk factors cannot be considered without sex, since sex-based immunological differences deeply affect disease onset, course, and prognosis. Understanding the mechanisms underlying sex-based differences is necessary in order to develop a more effective and personalized therapeutic approach.


Asunto(s)
Esclerosis Múltiple/etiología , Caracteres Sexuales , Humanos , Factores de Riesgo
15.
Front Neuroanat ; 14: 17, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32372921

RESUMEN

Most neurological disorders seemingly have heterogenous pathogenesis, with overlapping contribution of neuronal, immune and vascular mechanisms of brain injury. The perivascular space in the brain represents a crossroad where those mechanisms interact, as well as a key anatomical component of the recently discovered glymphatic pathway, which is considered to play a crucial role in the clearance of brain waste linked to neurodegenerative diseases. The pathological interplay between neuronal, immune and vascular factors can create an environment that promotes self-perpetration of mechanisms of brain injury across different neurological diseases, including those that are primarily thought of as neurodegenerative, neuroinflammatory or cerebrovascular. Changes of the perivascular space can be monitored in humans in vivo using magnetic resonance imaging (MRI). In the context of glymphatic clearance, MRI-visible enlarged perivascular spaces (EPVS) are considered to reflect glymphatic stasis secondary to the perivascular accumulation of brain debris, although they may also represent an adaptive mechanism of the glymphatic system to clear them. EPVS are also established correlates of dementia and cerebral small vessel disease (SVD) and are considered to reflect brain inflammatory activity. In this review, we describe the "perivascular unit" as a key anatomical and functional substrate for the interaction between neuronal, immune and vascular mechanisms of brain injury, which are shared across different neurological diseases. We will describe the main anatomical, physiological and pathological features of the perivascular unit, highlight potential substrates for the interplay between different noxae and summarize MRI studies of EPVS in cerebrovascular, neuroinflammatory and neurodegenerative disorders.

16.
Front Immunol ; 10: 1916, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31555257

RESUMEN

The gut barrier consists of several components, including the mucus layer, made of mucins and anti-bacterial molecule, the epithelial cells, connected by tight junction proteins, and a mixed population of cells involved in the interplay with microbes, such as M cells, elongations of "antigen presenting cells" dwelling the lamina propria, intraepithelial lymphocytes and Paneth cells secreting anti-bacterial peptides. Recently, the influence of intestinal permeability (IP) changes on organs far from gut has been investigated, and IP changes in multiple sclerosis (MS) have been described. A related topic is the microbiota dysfunction that underpins the development of neuroinflammation in animal models and human diseases, including MS. It becomes now of interest to better understand the mechanisms through which IP changes contribute to pathophysiology of neuroinflammation. The following aspects seem of relevance: studies on other biomarkers of IP alterations; the relationship with known risk factors for MS development, such as vitamin D deficiency; the link between blood brain barrier and gut barrier breakdown; the effects of IP increase on microbial translocation and microglial activation; the parallel patterns of IP and neuroimmune changes in MS and neuropsychiatric disorders, that afflict a sizable proportion of patients with MS. We will also discuss the therapeutic implications of IP changes, considering the impact of MS-modifying therapies on gut barrier, as well as potential approaches to enhance or protect IP homeostasis.


Asunto(s)
Susceptibilidad a Enfermedades , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Esclerosis Múltiple/etiología , Esclerosis Múltiple/metabolismo , Animales , Citocinas/metabolismo , Microbioma Gastrointestinal/inmunología , Humanos , Mediadores de Inflamación , Mucosa Intestinal/patología , Esclerosis Múltiple/patología , Neuroinmunomodulación , Permeabilidad
17.
Front Neurol ; 10: 695, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31379701

RESUMEN

Introduction: To compare a schedule with cyclic withdrawal (CW) of interferon beta (IFN-b) 1b, respect to the full regimen (FR), in relapsing-remitting MS (RR-MS). Methods: Participants were randomly assigned to CW or FR schedule and monthly monitored with brain MRI scans for 12 months (three of run-in and 9 of treatment). CW schedule included drug withdrawal for 1 month after two of treatment for a total of three quarters over the 9-month treatment period. The assessing neurologist and the expert neuroradiologists were blind. After the blind phase of the study all participants took their indicated disease modifying therapies in a prospectively planned, open-label extension phase (up to 120 months). Results: Of 60 randomized subjects 56 (29 in FR and 27 in CW group) completed the single-blind phase: the two groups were comparable, except for a non-significant difference in the number of contrast-enhanced lesions (CEL) at the end of run-in. The two-sided 90% CI for the ratio between median number of cumulative CEL was 0.29-1.07, allowing to significantly reject the null hypothesis of a ratio ≥1.2 and to meet the primary end-point of non-inferiority (the threshold and the ratio between median were chosen according to the non-normal distribution of the data). The differences (CW vs. FR) were also non-significant for secondary end points: mean cumulative number of T2-weighted new and enlarging lesions (3.48 ± 5.34 vs. 3.86 ± 6.76); mean number and volume (cm3) of black holes (1.24 ± 1.61 vs. 2.71 ± 4.56; 489.11 ± 1488.12 vs. 204.48 ± 396.98); number of patients with at least an active scan (21 vs. 22); mean relapse rate (0.52 ± 0.89 vs. 0.34 ± 0.66), relapse risk ratio adjusted for baseline variables (2.15 [0.64-7.18]), EDSS score (1.0 [1-1.56] vs. 1.5 [1-1.78]), proportion of patients with antibodies anti-IFN (5 [21%] vs. 8 [36%]). Fifty-four patients (27 for each study arm) completed the open-label phase. The annualized RR, EDSS, proportion of patients shifting to progressive disease and hazard ratio of shifting, adjusting for baseline covariates, were comparable between the two study groups. Conclusions: A calendar with CW was non-inferior than FR at the beginning of IFN-b therapy, and may not affect the long-term outcome. Clinical Trial Registration: www.ClinicalTrials.gov, identifier: NCT00270816.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...