Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(8): 114538, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39058590

RESUMEN

Repair of DNA double-strand breaks by the non-homologous end-joining pathway is initiated by the binding of Ku to DNA ends. Multiple Ku proteins load onto linear DNAs in vitro. However, in cells, Ku loading is limited to ∼1-2 molecules per DNA end. The mechanisms enforcing this limit are currently unclear. Here, we show that the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs), but not its protein kinase activity, is required to prevent excessive Ku entry into chromatin. Ku accumulation is further restricted by two mechanisms: a neddylation/FBXL12-dependent process that actively removes loaded Ku molecules throughout the cell cycle and a CtIP/ATM-dependent mechanism that operates in S phase. Finally, we demonstrate that the misregulation of Ku loading leads to impaired transcription in the vicinity of DNA ends. Together, our data shed light on the multiple mechanisms operating to prevent Ku from invading chromatin and interfering with other DNA transactions.


Asunto(s)
Cromatina , Proteína Quinasa Activada por ADN , Autoantígeno Ku , Cromatina/metabolismo , Autoantígeno Ku/metabolismo , Humanos , Proteína Quinasa Activada por ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo
2.
Nat Commun ; 13(1): 7052, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36396651

RESUMEN

Histone variant H2A.Z is a conserved feature of nucleosomes flanking protein-coding genes. Deposition of H2A.Z requires ATP-dependent replacement of nucleosomal H2A by a chromatin remodeler related to the multi-subunit enzyme, yeast SWR1C. How these enzymes use ATP to promote this nucleosome editing reaction remains unclear. Here we use single-molecule and ensemble methodologies to identify three ATP-dependent phases in the H2A.Z deposition reaction. Real-time analysis of single nucleosome remodeling events reveals an initial priming step that occurs after ATP addition that involves a combination of both transient DNA unwrapping from the nucleosome and histone octamer deformations. Priming is followed by rapid loss of histone H2A, which is subsequently released from the H2A.Z nucleosomal product. Surprisingly, rates of both priming and the release of the H2A/H2B dimer are sensitive to ATP concentration. This complex reaction pathway provides multiple opportunities to regulate timely and accurate deposition of H2A.Z at key genomic locations.


Asunto(s)
Histonas , Proteínas de Saccharomyces cerevisiae , Histonas/metabolismo , Nucleosomas/metabolismo , Ensamble y Desensamble de Cromatina , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfato/metabolismo
3.
Elife ; 92020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33289484

RESUMEN

Non-homologous end joining (NHEJ) is the predominant pathway that repairs DNA double-strand breaks in vertebrates. During NHEJ DNA ends are held together by a multi-protein synaptic complex until they are ligated. Here, we use Xenopus laevis egg extract to investigate the role of the intrinsically disordered C-terminal tail of the XRCC4-like factor (XLF), a critical factor in end synapsis. We demonstrate that the XLF tail along with the Ku-binding motif (KBM) at the extreme C-terminus are required for end joining. Although the underlying sequence of the tail can be varied, a minimal tail length is required for NHEJ. Single-molecule FRET experiments that observe end synapsis in real-time show that this defect is due to a failure to closely align DNA ends. Our data supports a model in which a single C-terminal tail tethers XLF to Ku, while allowing XLF to form interactions with XRCC4 that enable synaptic complex formation.


Asunto(s)
Reparación del ADN por Unión de Extremidades , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Cromatografía en Gel , Reparación del ADN por Unión de Extremidades/genética , Enzimas Reparadoras del ADN/genética , Proteínas de Unión al ADN/genética , Immunoblotting , Óvulo/metabolismo , Alineación de Secuencia , Proteínas de Xenopus/genética , Xenopus laevis/genética
4.
Mol Cell ; 77(5): 1080-1091.e8, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-31862156

RESUMEN

Enzymatic processing of DNA underlies all DNA repair, yet inappropriate DNA processing must be avoided. In vertebrates, double-strand breaks are repaired predominantly by non-homologous end joining (NHEJ), which directly ligates DNA ends. NHEJ has the potential to be highly mutagenic because it uses DNA polymerases, nucleases, and other enzymes that modify incompatible DNA ends to allow their ligation. Using frog egg extracts that recapitulate NHEJ, we show that end processing requires the formation of a "short-range synaptic complex" in which DNA ends are closely aligned in a ligation-competent state. Furthermore, single-molecule imaging directly demonstrates that processing occurs within the short-range complex. This confinement of end processing to a ligation-competent complex ensures that DNA ends undergo ligation as soon as they become compatible, thereby minimizing mutagenesis. Our results illustrate how the coordination of enzymatic catalysis with higher-order structural organization of substrate maximizes the fidelity of DNA repair.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Inestabilidad Genómica , Animales , ADN Ligasas/genética , ADN Ligasas/metabolismo , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Proteína Quinasa Activada por ADN/genética , Proteína Quinasa Activada por ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Femenino , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo , Modelos Genéticos , Complejos Multiproteicos , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Imagen Individual de Molécula , Factores de Tiempo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA