Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
mSystems ; 9(3): e0130623, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38411098

RESUMEN

The continental shelf of the Western Antarctic Peninsula (WAP) is a highly variable system characterized by strong cross-shelf gradients, rapid regional change, and large blooms of phytoplankton, notably diatoms. Rapid environmental changes coincide with shifts in plankton community composition and productivity, food web dynamics, and biogeochemistry. Despite the progress in identifying important environmental factors influencing plankton community composition in the WAP, the molecular basis for their survival in this oceanic region, as well as variations in species abundance, metabolism, and distribution, remains largely unresolved. Across a gradient of physicochemical parameters, we analyzed the metabolic profiles of phytoplankton as assessed through metatranscriptomic sequencing. Distinct phytoplankton communities and metabolisms closely mirrored the strong gradients in oceanographic parameters that existed from coastal to offshore regions. Diatoms were abundant in coastal, southern regions, where colder and fresher waters were conducive to a bloom of the centric diatom, Actinocyclus. Members of this genus invested heavily in growth and energy production; carbohydrate, amino acid, and nucleotide biosynthesis pathways; and coping with oxidative stress, resulting in uniquely expressed metabolic profiles compared to other diatoms. We observed strong molecular evidence for iron limitation in shelf and slope regions of the WAP, where diatoms in these regions employed iron-starvation induced proteins, a geranylgeranyl reductase, aquaporins, and urease, among other strategies, while limiting the use of iron-containing proteins. The metatranscriptomic survey performed here reveals functional differences in diatom communities and provides further insight into the environmental factors influencing the growth of diatoms and their predicted response to changes in ocean conditions. IMPORTANCE: In the Southern Ocean, phytoplankton must cope with harsh environmental conditions such as low light and growth-limiting concentrations of the micronutrient iron. Using metratranscriptomics, we assessed the influence of oceanographic variables on the diversity of the phytoplankton community composition and on the metabolic strategies of diatoms along the Western Antarctic Peninsula, a region undergoing rapid climate change. We found that cross-shelf differences in oceanographic parameters such as temperature and variable nutrient concentrations account for most of the differences in phytoplankton community composition and metabolism. We opportunistically characterized the metabolic underpinnings of a large bloom of the centric diatom Actinocyclus in coastal waters of the WAP. Our results indicate that physicochemical differences from onshore to offshore are stronger than between southern and northern regions of the WAP; however, these trends could change in the future, resulting in poleward shifts in functional differences in diatom communities and phytoplankton blooms.


Asunto(s)
Diatomeas , Diatomeas/genética , Regiones Antárticas , Fitoplancton/genética , Océanos y Mares , Plancton/metabolismo , Hierro/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(39): e2307638120, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37722052

RESUMEN

Photosynthetic carbon (C) fixation by phytoplankton in the Southern Ocean (SO) plays a critical role in regulating air-sea exchange of carbon dioxide and thus global climate. In the SO, photosynthesis (PS) is often constrained by low iron, low temperatures, and low but highly variable light intensities. Recently, proton-pumping rhodopsins (PPRs) were identified in marine phytoplankton, providing an alternate iron-free, light-driven source of cellular energy. These proteins pump protons across cellular membranes through light absorption by the chromophore retinal, and the resulting pH energy gradient can then be used for active membrane transport or for synthesis of adenosine triphosphate. Here, we show that PPR is pervasive in Antarctic phytoplankton, especially in iron-limited regions. In a model SO diatom, we found that it was localized to the vacuolar membrane, making the vacuole a putative alternative phototrophic organelle for light-driven production of cellular energy. Unlike photosynthetic C fixation, which decreases substantially at colder temperatures, the proton transport activity of PPR was unaffected by decreasing temperature. Cellular PPR levels in cultured SO diatoms increased with decreasing iron concentrations and energy production from PPR photochemistry could substantially augment that of PS, especially under high light intensities, where PS is often photoinhibited. PPR gene expression and high retinal concentrations in phytoplankton in SO waters support its widespread use in polar environments. PPRs are an important adaptation of SO phytoplankton to growth and survival in their cold, iron-limited, and variable light environment.


Asunto(s)
Diatomeas , Rodopsina , Rodopsina/genética , Fitoplancton/genética , Protones , Regiones Antárticas , Transporte Iónico , Diatomeas/genética
3.
J Phycol ; 53(4): 820-832, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28394444

RESUMEN

Iron availability limits primary productivity in large areas of the world's oceans. Ascertaining the iron status of phytoplankton is essential for understanding the factors regulating their growth and ecology. We developed an incubation-independent, molecular-based approach to assess the iron nutritional status of specific members of the diatom community, initially focusing on the ecologically important pennate diatom Pseudo-nitzschia. Through a comparative transcriptomic approach, we identified two genes that track the iron status of Pseudo-nitzschia with high fidelity. The first gene, ferritin (FTN), encodes for the highly specialized iron storage protein induced under iron-replete conditions. The second gene, ISIP2a, encodes an iron-concentrating protein induced under iron-limiting conditions. In the oceanic diatom Pseudo-nitzschia granii (Hasle) Hasle, transcript abundance of these genes directly relates to changes in iron availability, with increased FTN transcript abundance under iron-replete conditions and increased ISIP2a transcript abundance under iron-limiting conditions. The resulting ISIP2a:FTN transcript ratio reflects the iron status of cells, where a high ratio indicates iron limitation. Field samples collected from iron grow-out microcosm experiments conducted in low iron waters of the Gulf of Alaska and variable iron waters in the California upwelling zone verify the validity of our proposed Pseudo-nitzschia Iron Limitation Index, which can be used to ascertain in situ iron status and further developed for other ecologically important diatoms.


Asunto(s)
Proteínas Algáceas/genética , Diatomeas/genética , Diatomeas/metabolismo , Ferritinas/genética , Hierro/metabolismo , Proteínas Algáceas/metabolismo , Ferritinas/metabolismo , Perfilación de la Expresión Génica , Fitoplancton/genética , Fitoplancton/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...