Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Glob Chang Biol ; 30(7): e17421, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39034889

RESUMEN

Current knowledge about the impacts of urbanisation on bird assemblages is based on evidence from studies partly or wholly undertaken in the breeding season. In comparison, the non-breeding season remains little studied, despite the fact that winter conditions at higher latitudes are changing more rapidly than other seasons. During the non-breeding season, cities may attract or retain bird species because they offer milder conditions or better feeding opportunities than surrounding habitats. However, the range of climatic, ecological and anthropogenic mechanisms shaping different facets of urban bird diversity in the non-breeding season are poorly understood. We explored these mechanisms using structural equation modelling to assess how urbanisation affects the taxonomic, phylogenetic and functional diversity of avian assemblages sampled worldwide in the non-breeding season. We found that minimum temperature, elevation, urban area and city age played a critical role in determining taxonomic diversity while a range of factors-including productivity, precipitation, elevation, distance to coasts and rivers, socio-economic (as a proxy of human facilitation) and road density-each contributed to patterns of phylogenetic and functional diversity. The structure and function of urban bird assemblages appear to be predominantly shaped by temperature, productivity and city age, with effects of these factors differing across seasons. Our results underline the importance of considering multiple hypotheses, including seasonal effects, when evaluating the impacts of urbanisation on biodiversity.


Asunto(s)
Biodiversidad , Aves , Ciudades , Estaciones del Año , Urbanización , Animales , Aves/fisiología , Filogenia
3.
Mol Ecol ; 32(13): 3450-3470, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37009890

RESUMEN

Genetic differentiation between and within natural populations is the result of the joint effects of neutral and adaptative processes. In addition, the spatial arrangement of the landscape promotes connectivity or creates barriers to gene flow, directly affecting speciation processes. In this study, we carried out a landscape genomics analysis using NextRAD data from a montane forest specialist bird complex, the Mesoamerican Chestnut-capped/Green-striped Brushfinch of the genus Arremon. Specifically, we examined population genomic structure using different assignment methods and genomic differentiation and diversity, and we tested alternative genetic isolation hypotheses at the individual level (e.g., isolation by barrier, IBB; isolation by environment, IBE; isolation by resistance, IBR). We found well-delimited genomic structuring (K = 5) across Mesoamerican montane forests in the studied group. Individual-level genetic distances among major montane ranges were mainly explained by IBR hypotheses in this sedentary Neotropical taxon. Our results uncover genetic distances/differentiation and patterns of gene flow in allopatric species that support the role of tropical mountains as spatial landscape drivers of biodiversity. IBR clearly supports a pattern of conserved niche-tracking of suitable habitat conditions and topographic complexity throughout glacial-interglacial dynamics.


Asunto(s)
Genética de Población , Passeriformes , Animales , Variación Genética/genética , Ecosistema , Bosques , Passeriformes/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA