Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 16778, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37798449

RESUMEN

Flap procedures are complex surgical tools widely used in reconstructive surgery. Flap ischemia is one of the most dangerous complications, both during the surgical procedure and during the patient's recovery, which can quickly lead to tissue necrosis (flap loss) with serious medical and psychological consequences. Today, bedside clinical assessment remains the gold standard for flap monitoring, but timely detection of flap ischemia is a difficult and challenging task, so auxiliary techniques are needed to support flap monitoring. Here we present a prototype of a new optical diagnostic tool, based on visible light absorption in diffuse reflectance spectroscopy, for non-invasive, continuous, real-time monitoring of flaps. The proposed approach is assessed by monitoring flap ischemic scenarios induced on pig animal models. The results obtained support that the proposed approach has great potential, not only for prompt detection of ischemia (in seconds), but also for clear differentiation between an arterial occlusion and venous occlusion.


Asunto(s)
Arteriopatías Oclusivas , Procedimientos de Cirugía Plástica , Humanos , Porcinos , Animales , Colgajos Quirúrgicos , Isquemia/diagnóstico , Isquemia/etiología , Arteriopatías Oclusivas/complicaciones , Complicaciones Posoperatorias
2.
Biomed Opt Express ; 12(8): 5008-5022, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34513239

RESUMEN

HbA1c is the gold standard test for monitoring medium/long term glycemia conditions in diabetes care, which is a critical factor in reducing the risk of chronic diabetes complications. Current technologies for measuring HbA1c concentration are invasive and adequate assays are still limited to laboratory-based methods that are not widely available worldwide. The development of a non-invasive diagnostic tool for HbA1c concentration can lead to the decrease of the rate of undiagnosed cases and facilitate early detection in diabetes care. We present a preliminary validation diagnostic study of W-band spectroscopy for detection and monitoring of sustained hyperglycemia, using the HbA1c concentration as reference. A group of 20 patients with type 1 diabetes mellitus and 10 healthy subjects were non-invasively assessed at three different visits over a period of 7 months by a millimeter-wave spectrometer (transmission mode) operating across the full W-band. The relationship between the W-band spectral profile and the HbA1c concentration is studied using longitudinal and non-longitudinal functional data analysis methods. A potential blind discrimination between patients with or without diabetes is obtained, and more importantly, an excellent relation (R-squared = 0.97) between the non-invasive assessment and the HbA1c measure is achieved. Such results support that W-band spectroscopy has great potential for developing a non-invasive diagnostic tool for in-vivo HbA1c concentration monitoring in humans.

3.
Sensors (Basel) ; 19(15)2019 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-31366169

RESUMEN

Diabetes is a very complex condition affecting millions of people around the world. Its occurrence, always accompanied by sustained hyperglycemia, leads to many medical complications that can be greatly mitigated when the disease is treated in its earliest stage. In this paper, a novel sensing approach for the early non-invasive detection and monitoring of sustained hyperglycemia is presented. The sensing principle is based on millimeter-wave transmission spectroscopy through the skin and subsequent statistical analysis of the amplitude data. A classifier based on functional principal components for sustained hyperglycemia prediction was validated on a sample of twelve mice, correctly classifying the condition in diabetic mice. Using the same classifier, sixteen mice with drug-induced diabetes were studied for two weeks. The proposed sensing approach was capable of assessing the glycemic states at different stages of induced diabetes, providing a clear transition from normoglycemia to hyperglycemia typically associated with diabetes. This is believed to be the first presentation of such evolution studies using non-invasive sensing. The results obtained indicate that gradual glycemic changes associated with diabetes can be accurately detected by non-invasively sensing the metabolism using a millimeter-wave spectral sensor, with an observed temporal resolution of around four days. This unprecedented detection speed and its non-invasive character could open new opportunities for the continuous control and monitoring of diabetics and the evaluation of response to treatments (including new therapies), enabling a much more appropriate control of the condition.


Asunto(s)
Glucemia/aislamiento & purificación , Diabetes Mellitus Experimental/diagnóstico , Hiperglucemia/diagnóstico , Análisis Espectral/métodos , Animales , Diabetes Mellitus Experimental/metabolismo , Humanos , Hiperglucemia/metabolismo , Ratones
4.
Sci Rep ; 6: 34035, 2016 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-27669659

RESUMEN

Chronic or sustained hyperglycemia associated to diabetes mellitus leads to many medical complications, thus, it is necessary to track the evolution of patients for providing the adequate management of the disease that is required for the restoration of the carbohydrate metabolism to a normal state. In this paper, a novel monitoring approach based on mm-wave spectroscopy is comprehensively described and experimentally validated using living animal models as target. The measurement method has proved the possibility of non-invasive, in-vivo, detection of hyperglycemia-associated conditions in different mouse models, making possible to clearly differentiate between several hyperglycemic states.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA