Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 18(10): e0293176, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37903108

RESUMEN

Intraguild predation (IGP)-predation between generalist predators (IGPredator and IGPrey) that potentially compete for a shared prey resource-is a common interaction module in terrestrial food webs. Understanding temporal variation in webs with widespread IGP is relevant to testing food web theory. We investigated temporal constancy in the structure of such a system: the spider-focused food web of the forest floor. Multiplex PCR was used to detect prey DNA in 3,300 adult spiders collected from the floor of a deciduous forest during spring, summer, and fall over four years. Because only spiders were defined as consumers, the web was tripartite, with 11 consumer nodes (spider families) and 22 resource nodes: 11 non-spider arthropod taxa (order- or family-level) and the 11 spider families. Most (99%) spider-spider predation was on spider IGPrey, and ~90% of these interactions were restricted to spider families within the same broadly defined foraging mode (cursorial or web-spinning spiders). Bootstrapped-derived confidence intervals (BCI's) for two indices of web structure, restricted connectance and interaction evenness, overlapped broadly across years and seasons. A third index, % IGPrey (% IGPrey among all prey of spiders), was similar across years (~50%) but varied seasonally, with a summer rate (65%) ~1.8x higher than spring and fall. This seasonal pattern was consistent across years. Our results suggest that extensive spider predation on spider IGPrey that exhibits consistent seasonal variation in frequency, and that occurs primarily within two broadly defined spider-spider interaction pathways, must be incorporated into models of the dynamics of forest-floor food webs.


Asunto(s)
Artrópodos , Arañas , Humanos , Animales , Cadena Alimentaria , Estaciones del Año , Conducta Predatoria
2.
Ecol Lett ; 19(3): 328-35, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26757702

RESUMEN

Although invasive plants are a major source of terrestrial ecosystem degradation worldwide, it remains unclear which trophic levels above the base of the food web are most vulnerable to plant invasions. We performed a meta-analysis of 38 independent studies from 32 papers to examine how invasive plants alter major groupings of primary and secondary consumers in three globally distributed ecosystems: wetlands, woodlands and grasslands. Within each ecosystem we examined if green (grazing) food webs are more sensitive to plant invasions compared to brown (detrital) food webs. Invasive plants have strong negative effects on primary consumers (detritivores, bacterivores, fungivores, and/or herbivores) in woodlands and wetlands, which become less abundant in both green and brown food webs in woodlands and green webs in wetlands. Plant invasions increased abundances of secondary consumers (predators and/or parasitoids) only in woodland brown food webs and green webs in wetlands. Effects of invasive plants on grazing and detrital food webs clearly differed between ecosystems. Overall, invasive plants had the most pronounced effects on the trophic structure of wetlands and woodlands, but caused no detectable changes to grassland trophic structure.


Asunto(s)
Cadena Alimentaria , Especies Introducidas , Fenómenos Fisiológicos de las Plantas , Bosques , Pradera , Humedales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA