RESUMEN
Doxorubicin (DOX) is known to cause cognitive impairments in patients submitted to long-term chemotherapy (deficits also known as chemobrain). Therefore, there is an urgent need for therapeutic strategies capable of returning cancer survivors back to their previous quality of life. The present study investigated whether resveratrol (RSV) or curcumin (CUR) administration could affect mnemonic function and brain morphological changes following DOX administration in rats. Male Wistar rats were divided into 4 groups: DOX group (2.5 mg/kg/week for 4 weeks, i.p., plus distilled water for 28 days, oral gavage - OG), DOX + RSV group (DOX, 2.5 mg/kg/week for 4 weeks, i.p., plus RSV, 10 mg/kg/day for 28 days, OG), DOX + CUR group (DOX, 2.5 mg/kg/week for 4 weeks, i.p., plus CUR, 100 mg/kg/day for 28 days, OG) and control (CTR) group (0.9% saline solution weekly for 4 weeks, i.p., plus distilled water for 28 days, OG). Behavioral analyses (open field - OF - and the novel object recognition test - NORT) were performed. Brains were collected and analyzed by hematoxylin-eosin and luxol fast blue staining techniques and by immunohistochemistry for GFAP (glial fibrillary acidic protein) expression in astrocytes and Iba1 (ionized calcium-binding adaptor molecule 1) expression in microglia. DOX-injected rats presented short-term and long-term memory impairments as seen in the NORT at 3 and 24 h after habituation and increased GFAP and Iba1 expression, respectively, in astrocytes and microglia of the frontal cortex, hypothalamus and hippocampus. Such cognitive deficits were prevented by CUR at both periods and by RSV at 24 h. DOX-induced astrogliosis and microgliosis were avoided by RSV and CUR. No signs of demyelination or neuronal loss were found in any group. Thus, CUR and RSV prevented memory loss, astrogliosis and microgliosis induced by DOX monotherapy.
Asunto(s)
Disfunción Cognitiva , Curcumina , Animales , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/tratamiento farmacológico , Curcumina/farmacología , Curcumina/uso terapéutico , Doxorrubicina/toxicidad , Masculino , Calidad de Vida , Ratas , Ratas Wistar , ResveratrolRESUMEN
Eruptive activity at Turrialba Volcano (Costa Rica) has escalated significantly since 2014, causing airport and school closures in the capital city of San José. Whether or not new magma is involved in the current unrest seems probable but remains a matter of debate as ash deposits are dominated by hydrothermal material. Here we use high-frequency gas monitoring to track the behavior of the volcano between 2014 and 2015 and to decipher magmatic versus hydrothermal contributions to the eruptions. Pulses of deeply derived CO2-rich gas (CO2/Stotal > 4.5) precede explosive activity, providing a clear precursor to eruptive periods that occurs up to 2 weeks before eruptions, which are accompanied by shallowly derived sulfur-rich magmatic gas emissions. Degassing modeling suggests that the deep magmatic reservoir is ~8-10 km deep, whereas the shallow magmatic gas source is at ~3-5 km. Two cycles of degassing and eruption are observed, each attributed to pulses of magma ascending through the deep reservoir to shallow crustal levels. The magmatic degassing signals were overprinted by a fluid contribution from the shallow hydrothermal system, modifying the gas compositions, contributing volatiles to the emissions, and reflecting complex processes of scrubbing, displacement, and volatilization. H2S/SO2 varies over 2 orders of magnitude through the monitoring period and demonstrates that the first eruptive episode involved hydrothermal gases, whereas the second did not. Massive degassing (>3000 T/d SO2 and H2S/SO2 > 1) followed, suggesting boiling off of the hydrothermal system. The gas emissions show a remarkable shift to purely magmatic composition (H2S/SO2 < 0.05) during the second eruptive period, reflecting the depletion of the hydrothermal system or the establishment of high-temperature conduits bypassing remnant hydrothermal reservoirs, and the transition from phreatic to phreatomagmatic eruptive activity.
RESUMEN
1. Two Na(+)-stimulated ATPase activities were determined in gill homogenates from squid, shrimp and teleost fish; in kidney slice homogenates from teleost fish, bullfrog, toad, iguana, chicken, duck, rat, pig and cow, as well as in homogenates from rat small intestinal cells, brain cortex and liver slices. The two Na(+)-stimulated ATPase activities, the Na- and the Na,K-ATPase, showed a different behavior toward K+ and ouabain. 2. The ouabain-insensitive, K(+)-independent, Na-ATPase activity for all the studied homogenates was completely inhibited by 2 mM furosemide. 3. An increase in cell volume of the kidney, brain cortex and liver slice preparations, as well as of the rat small intestinal cells, produced a concomitant increase of the ouabain-insensitive Na-ATPase.