Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros










Intervalo de año de publicación
1.
Biochim Biophys Acta Rev Cancer ; 1879(2): 189087, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38395237

RESUMEN

Cofilin-1 (CFL1) modulates dynamic actin networks by severing and enhancing depolymerization. The upregulation of cofilin-1 expression in several cancer types is associated with tumor progression and metastasis. However, recent discoveries indicated relevant cofilin-1 functions under oxidative stress conditions, interplaying with mitochondrial dynamics, and apoptosis networks. In this scenario, these emerging roles might impact the response to clinical therapy and could be used to enhance treatment efficacy. Here, we highlight new perspectives of cofilin-1 in the therapy resistance context and discussed how cofilin-1 is involved in these events, exploring aspects of its contribution to therapeutic resistance. We also provide an analysis of CFL1 expression in several tumors predicting survival. Therefore, understanding how exactly coflin-1 plays, particularly in therapy resistance, may pave the way to the development of treatment strategies and improvement of patient survival.


Asunto(s)
Actinas , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética
2.
Protein J ; 43(2): 333-350, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38347326

RESUMEN

A novel trypsin inhibitor from Cajanus cajan (TIC) fresh leaves was partially purified by affinity chromatography. SDS-PAGE revealed one band with about 15 kDa with expressive trypsin inhibitor activity by zymography. TIC showed high affinity for trypsin (Ki = 1.617 µM) and was a competitive inhibitor for this serine protease. TIC activity was maintained after 24 h of treatment at 70 °C, after 1 h treatments with different pH values, and ß-mercaptoethanol increasing concentrations, and demonstrated expressive structural stability. However, the activity of TIC was affected in the presence of oxidizing agents. In order to study the effect of TIC on secreted serine proteases, as well as on the cell culture growth curve, SK-MEL-28 metastatic human melanoma cell line and CaCo-2 colon adenocarcinoma was grown in supplemented DMEM, and the extracellular fractions were submitted salting out and affinity chromatography to obtain new secreted serine proteases. TIC inhibited almost completely, 96 to 89%, the activity of these serine proteases and reduced the melanoma and colon adenocarcinoma cells growth of 48 and 77% respectively. Besides, it is the first time that a trypsin inhibitor was isolated and characterized from C. cajan leaves and cancer serine proteases were isolated and partial characterized from SK-MEL-28 and CaCo-2 cancer cell lines. Furthermore, TIC shown to be potent inhibitor of tumor protease affecting cell growth, and can be one potential drug candidate to be employed in chemotherapy of melanoma and colon adenocarcinoma.


Asunto(s)
Cajanus , Hojas de la Planta , Humanos , Cajanus/química , Hojas de la Planta/química , Células CACO-2 , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Inhibidores de Tripsina/farmacología , Inhibidores de Tripsina/química , Inhibidores de Tripsina/aislamiento & purificación , Proteínas de Plantas/farmacología , Proteínas de Plantas/química , Proteínas de Plantas/aislamiento & purificación , Serina Proteasas/química , Serina Proteasas/aislamiento & purificación , Serina Proteasas/metabolismo
3.
Metabolites ; 13(7)2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37512496

RESUMEN

Açaí, Euterpe oleracea Mart., is a native plant from the Amazonian and is rich in several phytochemicals with anti-tumor activities. The aim was to analyze the effects of açaí seed oil on colorectal adenocarcinoma (ADC) cells. In vitro analyses were performed on CACO-2, HCT-116, and HT-29 cell lines. The strains were treated with açaí seed oil for 24, 48, and 72 h, and cell viability, death, and morphology were analyzed. Molecular docking was performed to evaluate the interaction between the major compounds in açaí seed oil and Annexin A2. The viability assay showed the cytotoxic effect of the oil in colorectal adenocarcinoma cells. Acai seed oil induced increased apoptosis in CACO-2 and HCT-116 cells and interfered with the cell cycle. Western blotting showed an increased expression of LC3-B, suggestive of autophagy, and Annexin A2, an apoptosis regulatory protein. Molecular docking confirmed the interaction of major fatty acids with Annexin A2, suggesting a role of açaí seed oil in modulating Annexin A2 expression in these cancer cell lines. Our results suggest the anti-tumor potential of açaí seed oil in colorectal adenocarcinoma cells and contribute to the development of an active drug from a known natural product.

4.
Cell Biol Int ; 47(9): 1638-1649, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37337926

RESUMEN

The activation of the nuclear factor-κB (NF-κB) pathway has been associated with the development and progression of colorectal cancer (CRC). Parthenolide (PTL), a well-known inhibitor of the NF-κB pathway, has emerged as an alternative treatment. However, whether PTL activity is tumor cell-specific and dependent on the mutational background has not been defined. This study investigated the antitumor role of PTL after tumor necrosis factor-α (TNF-α) stimulation in various CRC cell lines with different mutational statuses of TP53. We observed that CRC cells displayed different patterns of basal p-IκBα levels; PTL reduced cell viability according to p-IκBα levels and p-IκBα levels varied among the cell lines according to the time of TNF-α stimulation. High concentrations of PTL reduced more effectively p-IκBα levels than low doses of PTL. However, PTL increased total IκBα levels in Caco-2 and HT-29 cells. In addition, PTL treatment downregulated p-p65 levels in HT-29 and HCT-116 cells stimulated by TNF-α in a dose-dependent manner. Moreover, PTL induced cell death via apoptosis and reduced the proliferation rate of TNF-α-treated HT-29 cells. Finally, PTL downregulated the messenger RNA levels of interleukin-1ß, a downstream cytokine of NF-κB, reverted the E-cadherin-mediated disorganization of cell-cell contacts, and decreased the invasion of HT-29 cells. Together, these results suggest a differential antitumoral activity of PTL on CRC cells with different mutational statuses of TP53, modulating cell death, survival, and proliferation underlying the NF-κB pathway TNF-α-induced. Therefore, PTL has emerged as a potential treatment for CRC in an inflammatory NF-κB-dependent manner.


Asunto(s)
Neoplasias Colorrectales , FN-kappa B , Humanos , FN-kappa B/metabolismo , Inhibidor NF-kappaB alfa/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Regulación hacia Abajo , Adhesión Celular , Células CACO-2 , Apoptosis , Proliferación Celular , Neoplasias Colorrectales/tratamiento farmacológico
5.
J Cell Biochem ; 124(1): 31-45, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36565460

RESUMEN

Radiotherapy is one of the most common modalities for the treatment of a wide range of tumors, including colorectal cancer (CRC); however, radioresistance of cancer cells remains a major limitation for this treatment. Following radiotherapy, the activities of various cellular mechanisms and cell signaling pathways are altered, resulting in the development of radioresistance, which leads to therapeutic failure and poor prognosis in patients with cancer. Furthermore, even though several inhibitors have been developed to target tumor resistance, these molecules can induce side effects in nontumor cells due to low specificity and efficiency. However, the role of these mechanisms in CRC has not been extensively studied. This review discusses recent studies regarding the relationship between radioresistance and the alterations in a series of cellular mechanisms and cell signaling pathways that lead to therapeutic failure and tumor recurrence. Our review also presents recent advances in the in vitro/in vivo study models aimed at investigating the radioresistance mechanism in CRC. Furthermore, it provides a relevant biochemical basis in theory, which can be useful to improve radiotherapy sensitivity and prolong patient survival.


Asunto(s)
Neoplasias Colorrectales , Transducción de Señal , Humanos , Tolerancia a Radiación , Neoplasias Colorrectales/metabolismo , Línea Celular Tumoral
6.
Eur J Pharmacol ; 933: 175253, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36067803

RESUMEN

The drug, 5-fluorouracil (5FU) is a standard first-line treatment for colorectal cancer (CRC) patients. However, drug resistance acquisition remains an important challenge for effective clinical outcomes. Here, we established a long-term drug-resistant CRC model and explored the cellular events underlying 5FU resistance. We showed that 5FU-treated cells (HCT-116 5FUR) using a prolonged treatment protocol were significantly more resistant than parental cells. Likewise, cell viability and IC50 values were also observed to increase in HCT-116 5FUR cells when treated with increasing doses of oxaliplatin, indicating a cross-resistance mechanism to other cytotoxic agents. Moreover, HCT-116 5FUR cells exhibited metabolic and molecular changes, as evidenced by increased thymidylate synthase levels and upregulated mRNA levels of ABCB1. HCT-116 5FUR cells were able to overcome S phase arrest and evade apoptosis, as well as activate autophagy, as indicated by increased LC3B levels. Cells treated with low and high doses displayed epithelial-mesenchymal transition (EMT) features, as observed by decreased E-cadherin and claudin-3 levels, increased vimentin protein levels, and increased SLUG, ZEB2 and TWIST1 mRNA levels. Furthermore, HCT-116 5FUR cells displayed enhanced migration and invasion capabilities. Interestingly, we found that the 5FU drug-resistance gene signature is positively associated with the mesenchymal signature in CRC samples, and that ABCB1 and ZEB2 co-expressed at high levels could predict poor outcomes in CRC patients. Overall, the 5FU long-term drug-resistance model established here induced various cellular events, and highlighted the importance of further efforts to identify promising targets involved in more than one cellular event to successfully overcome drug-resistance.


Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales , Apoptosis , Autofagia , Cadherinas/genética , Línea Celular Tumoral , Proliferación Celular , Claudina-3 , Neoplasias del Colon/tratamiento farmacológico , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Citotoxinas , Resistencia a Antineoplásicos , Transición Epitelial-Mesenquimal , Fluorouracilo/farmacología , Humanos , Oxaliplatino/farmacología , ARN Mensajero , Timidilato Sintasa , Vimentina
7.
Cancer Biol Ther ; 23(1): 1-13, 2022 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-35944058

RESUMEN

The PI3K/Akt and Wnt/ß-catenin pathways play an important role in the acquisition of the malignant phenotype in cancer. However, there are few data regarding the role of the interplay between both pathways in colorectal cancer (CRC) progression. The mutational status and the clinicopathological characteristics of PI3K/Akt and Wnt/ß-catenin pathways were accessed by bioinformatic analysis whereas that the impact of the interplay between the activity of both pathways to explain tumorigenic potential was performed in vitro using IGF-1 and Wnt3a treatments in CRC cell models. The mutational status of these pathways did not influence the survival of CRC patients, but an association between clinicopathological characteristics in patients with mutations in one, but not in both pathways was observed. A potentiating effect on the activation of both pathways and enhanced cellular migration and proliferation was observed when both pathways were activated simultaneously with IGF-1 and Wnt3a. In addition, these effects were hindered after pretreatment with LY294002, a specific PI3K inhibitor, suggesting some dependence between these two signaling cascades. Our findings show that, regardless of mutational status, there is an interplay between the activity of PI3K/Akt and Wnt/ß-catenin pathways that contributes to events related to CRC progression and that the reversal of such events using a PI3K inhibitor highlights the value of targeting these pathways for potential directed therapies in CRC patients.


Asunto(s)
Neoplasias Colorrectales , beta Catenina , Línea Celular Tumoral , Proliferación Celular , Neoplasias Colorrectales/patología , Humanos , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/farmacología , Mutación , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas Proto-Oncogénicas c-akt/metabolismo , Vía de Señalización Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo
9.
Phytother Res ; 35(7): 3769-3780, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33792975

RESUMEN

Colorectal cancer (CRC) is the second leading cause of cancer-related death globally. In spite of the increasing knowledge on molecular characteristics of different cancer types including CRC, there is limitation in the development of an effective treatment. The present study aimed to verify the antitumor effect of kopsanone, an indole alkaloid. To achieve this, we treated human colon cancer cells (Caco-2 and HCT-116) with kopsanone and analyzed its effects on cell viability, cell-cell adhesion, and actin cytoskeleton organization. In addition, functional assays including micronuclei formation, colony formation, cell migration, and invasiveness were performed. We observed that kopsanone reduced viability and proliferation and induced micronuclei formation of HCT-116 cells. Also, kopsanone inhibited anchorage-dependent colony formation and modulated adherens junctions (AJs), thus increasing the localization of E-cadherin and ß-catenin in the cytosol of the invasive cells. Finally, fluorescence assays showed that kopsanone decreased stress fibers formation and reduced migration but not invasion of HCT-116 cells. Taken together, these findings indicate that kopsanone reduces proliferation and migration of HCT-116 cells via modulation of AJs and can therefore be considered for future in vivo and clinical investigation as potential therapeutic agent for treatment of CRC.


Asunto(s)
Neoplasias del Colon , Alcaloides Indólicos/farmacología , Células CACO-2 , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Neoplasias del Colon/tratamiento farmacológico , Células HCT116 , Humanos
10.
Cancer Cell Int ; 21(1): 69, 2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33482809

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is among the deadliest cancers, wherein early dissemination of tumor cells, and consequently, metastasis formation, are the main causes of mortality and poor prognosis. Cofilin-1 (CFL-1) and its modulators, LIMK1/SSH1, play key roles in mediating the invasiveness by driving actin cytoskeleton reorganization in various cancer types. However, their clinical significance and prognostic value in CRC has not been fully explored. Here, we evaluated the clinical contribution of these actin regulators according to TNM and consensus molecular subtypes (CMSs) classification. METHODS: CFL-1, LIMK1 and SSH1 mRNA/protein levels were assessed by real-time PCR and immunohistochemical analyses using normal adjacent and tumor tissues obtained from a clinical cohort of CRC patients. The expression levels of these proteins were associated with clinicopathological features by using the chi square test. In addition, using RNA-Seq data of CRC patients from The Cancer Genome Atlas (TCGA) database, we determine how these actin regulators are expressed and distributed according to TNM and CMSs classification. Based on gene expression profiling, Kaplan-Meier survival analysis was used to evaluated overall survival. RESULTS: Bioinformatic analysis revealed that LIMK1 expression was upregulated in all tumor stages. Patients with high levels of LIMK1 demonstrated significantly lower overall survival rates and exhibited greater lymph node metastatic potential in a clinical cohort. In contrast, CFL-1 and SSH1 have expression downregulated in all tumor stages. However, immunohistochemical analyses showed that patients with high protein levels of CFL-1 and SSH1 exhibited greater lymph node metastatic potential and greater depth of local invasion. In addition, using the CMSs classification to evaluate different biological phenotypes of CRC, we observed that LIMK1 and SSH1 genes are upregulated in immune (CMS1) and mesenchymal (CMS4) subtypes. However, patients with high levels of LIMK1 also demonstrated significantly lower overall survival rates in canonical (CMS2), and metabolic (CMS3) subtypes. CONCLUSIONS: We demonstrated that CFL-1 and its modulators, LIMK1/SSH1, are differentially expressed and associated with lymph node metastasis in CRC. Finally, this expression profile may be useful to predict patients with aggressive signatures, particularly, the immune and mesenchymal subtypes of CRC.

11.
Cell Biol Int ; 45(3): 662-673, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33300198

RESUMEN

Transforming growth factor-ß (TGF-ß) plays a dual role acting as tumor promoter or suppressor. Along with cyclooxygenase-2 (COX-2) and oncogenic Ras, this multifunctional cytokine is deregulated in colorectal cancer. Despite their individual abilities to promote tumor growth and invasion, the mechanisms of cross regulation between these pathways is still unclear. Here, we investigate the effects of TGF-ß, Ras oncogene and COX-2 in the colorectal cancer context. We used colon adenocarcinoma cell line HT-29 and Ras-transformed IEC-6 cells, both treated with prostaglandin E2 (PGE2 ), TGF-ß or a combined treatment with these agents. We demonstrated that PGE2 alters the subcellular localization of E-cadherin and ß-catenin and enhanced the tumorigenic potential in HT-29 cells. This effect was inhibited by TGF-ß, indicating a tumor suppressor role. Conversely, in Ras-transformed IEC-6 cells, TGF-ß induced COX-2 expression and increased invasiveness, acting as a tumor promoter. In IEC-6 Ras-transformed cells, TGF-ß increased nuclear ß-catenin and Wnt/ß-catenin activation, opposite to what was seen in the PGE2 and TGF-ß joint treatment in HT-29 cells. Together, our findings show that TGF-ß increases COX-2 levels and induces invasiveness cooperating with Ras in a Wnt/ß-catenin activation-dependent manner. This shows TGF-ß dual regulation over COX-2/PGE2 tumor promotion depending on the H-Ras and Wnt/ß-catenin pathways activation status in intestinal cancer cells.


Asunto(s)
Carcinogénesis/metabolismo , Carcinogénesis/patología , Neoplasias Colorrectales/metabolismo , Ciclooxigenasa 2/metabolismo , Dinoprostona/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Vía de Señalización Wnt , Cadherinas/metabolismo , Movimiento Celular , Proliferación Celular , Neoplasias Colorrectales/patología , Células HT29 , Humanos , Invasividad Neoplásica , Factores de Transcripción TCF/metabolismo , Transcripción Genética , beta Catenina/metabolismo
12.
Stem Cell Rev Rep ; 16(6): 1266-1279, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33067729

RESUMEN

Mesenchymal stromal cells (MSCs) were first used as a source for cell therapy in 1995; however, despite their versatility and unambiguous demonstration of efficacy and safety in preclinical/phase I studies, the positive effect of MSCs in human phase III studies did not resemble the success obtained in mouse models of disease. This dissonance highlights the need to more thoroughly study the immunobiology of MSCs to make better use of these cells. Thus, we aimed to study the immunobiology of MSCs by using chip array analysis as a method for general screening to obtain a global picture in our model study and found IFNy and IL-17 signaling as the first two "top canonical pathways" involved in MSCs immunomodulation. The role of IFNy in triggering the immunosuppressive properties of MSCs is well recognized by many groups; however, the role of IL-17 in this process remains uncertain. Interestingly, in contrast to IFNy, which actively improved the MSCs-mediated immunosuppression, IL-17 did not improve directly the MSCs-mediated immunosuppression. Instead, IL-17 signaling induced the migration of MSCs and inflammatory cells, bringing these cell types together and increasing the likelihood of the lymphocytes sensing the immunosuppressive molecules produced by the MSCs. These effects also correlated with high levels of cytokine/chemokine production and metalloprotease activation by MSCs. Importantly, this treatment maintained the MSCs safety profile by not inducing the expression of molecules related to antigen presentation. In this way, our findings highlight the possibility of using IL-17, in combination with IFNy, to prime MSCs for cell therapy to improve their biological properties and thus their therapeutic efficacy. Finally, the use of preactivated MSCs may also minimize variations among MSCs to produce more uniform therapeutic products. In the not-so-distant future, we envisage a portfolio of MSCs activated by different cocktails specifically designed to target and treat specific diseases. Graphical abstract.


Asunto(s)
Movimiento Celular , Terapia de Inmunosupresión , Interferón gamma/metabolismo , Interleucina-17/metabolismo , Células Madre Mesenquimatosas/metabolismo , Movimiento Celular/genética , Citocinas/metabolismo , Regulación de la Expresión Génica , Humanos , Mediadores de Inflamación/metabolismo , Prueba de Cultivo Mixto de Linfocitos , Células Madre Mesenquimatosas/inmunología , Fenotipo , Transducción de Señal
13.
Oncol Rep ; 44(4): 1649-1661, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32945502

RESUMEN

Changes in protein levels in different components of the apical junctional complex occur in colorectal cancer (CRC). Claudin­3 is one of the main constituents of tight junctions, and its overexpression can increase the paracellular flux of macromolecules, as well as the malignant potential of CRC cells. The aim of this study was to investigate the molecular mechanisms involved in the regulation of claudin­3 and its prognostic value in CRC. In silico evaluation in each of the CRC consensus molecular subtypes (CMSs) revealed that high expression levels of CLDN3 (gene encoding claudin­3) in CMS2 and CMS3 worsened the patients' long­term survival, whereas a decrease in claudin­3 levels concomitant with a reduction in phosphorylation levels of epidermal growth factor receptor (EGFR) and insulin­like growth factor 1 receptor (IGF1R) could be achieved by inhibiting N­glycan biosynthesis in CRC cells. We also observed that specific inactivation of these receptor tyrosine kinases (RTKs) led to a decrease in claudin­3 levels, and this regulation seems to be mediated by phospholipase C (PLC) and signal transducer and activator of transcription 3 (STAT3) in CRC cells. RTKs are modulated by their N­linked glycans, and inhibition of N­glycan biosynthesis decreased the claudin­3 levels; therefore, we evaluated the correlation between N­glycogenes and CLDN3 expression levels in each of the CRC molecular subtypes. The CMS1 (MSI immune) subtype concomitantly exhibited low expression levels of CLDN3 and N­glycogenes (MGAT5, ST6GAL1, and B3GNT8), whereas CMS2 (canonical) exhibited high gene expression levels of CLDN3 and N­glycogenes (ST6GAL1 and B3GNT8). A robust positive correlation was also observed between CLDN3 and B3GNT8 expression levels in all CMSs. These results support the hypothesis of a mechanism integrating RTK signaling and N­glycosylation for the regulation of claudin­3 levels in CRC, and they suggest that CLDN3 expression can be used to predict the prognosis of patients identified as CMS2 or CMS3.


Asunto(s)
Antígenos CD/genética , Claudina-3/genética , Neoplasias Colorrectales/genética , N-Acetilglucosaminiltransferasas/genética , Sialiltransferasas/genética , Neoplasias Colorrectales/patología , Supervivencia sin Enfermedad , Receptores ErbB/genética , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Glicosilación , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Receptor IGF Tipo 1/genética , Factor de Transcripción STAT3/genética , Transducción de Señal/genética
14.
Int J Mol Sci ; 21(8)2020 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-32340328

RESUMEN

Alterations in the composition and architecture of the extracellular matrix (ECM) can influence cancer growth and dissemination. During epithelial-mesenchymal transition (EMT), epithelial cells assume a mesenchymal cell phenotype, changing their adhesion profiles from cell-cell contacts to cell-matrix interactions, contributing to metastasis. Breast cancer cells present at different stages of differentiation, producing distinct ECMs in the same tumor mass. However, the contribution of ECM derived from metastatic tumor cells to EMT is unclear. Here, we showed the mechanisms involved in the interaction of MCF-7, a low-metastatic, epithelial breast cancer cell line, with the ECM produced by a high metastatic breast tumor cell, MDA-MB-231 (MDA-ECM). MDA-ECM induced morphological changes in MCF-7 cells, decreased the levels of E-cadherin, up-regulated mesenchymal markers, and augmented cell migration. These changes were accompanied by the activation of integrin-associated signaling, with increased phosphorylation of FAK, ERK, and AKT and activation canonical TGF-ß receptor signaling, enhancing phosphorylation of SMAD2 and SMAD4 nuclear translocation in MCF-7 cells. Treatment with Kistrin (Kr), a specific ligand of integrin αvß3 EMT induced by MDA-ECM, inhibited TGF-ß receptor signaling in treated MCF-7 cells. Our results revealed that after interaction with the ECM produced by a high metastatic breast cancer cell, MCF-7 cells lost their characteristic epithelial phenotype undergoing EMT, an effect modulated by integrin signaling in crosstalk with TGF-ß receptor signaling pathway. The data evidenced novel potential targets for antimetastatic breast cancer therapies.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Transición Epitelial-Mesenquimal , Matriz Extracelular/metabolismo , Integrina alfaVbeta3/metabolismo , Neoplasias de la Mama/genética , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Transición Epitelial-Mesenquimal/genética , Femenino , Humanos , Integrina alfaVbeta3/genética , Unión Proteica , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo
15.
Nanomedicine (Lond) ; 14(12): 1565-1578, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31215349

RESUMEN

Aim: Colon cancer (CC) is the second cause of cancer death worldwide. The use of nanoparticles for drug delivery has been increasing in cancer clinical trials over recent years. Materials & methods: We evaluated cytotoxicity of citrate-capped gold nanoparticles (GNPs) and the role they play on cell-cell adhesion. We also used GNP for delivery of cetuximab into different CC cell lines. Results: CC cells with well-formed tight junctions impair GNP uptake. Noncytotoxic concentration of GNP increases paracellular permeability in Caco-2 cells in a reversible way, concomitantly to tight junctions proteins CLDN1 and ZO-1 redistribution. GNP functionalized with cetuximab increases death of invasive HCT-116 CC cells. Conclusion: GNP can be used for drug delivery and can improve efficiency of CC therapy.


Asunto(s)
Cetuximab/farmacología , Nanopartículas del Metal/química , Células CACO-2 , Supervivencia Celular/efectos de los fármacos , Técnica del Anticuerpo Fluorescente , Oro , Células HCT116 , Células HT29 , Humanos , Nanopartículas del Metal/ultraestructura , Microscopía Electrónica de Transmisión , Uniones Estrechas/efectos de los fármacos , Uniones Estrechas/metabolismo , Uniones Estrechas/ultraestructura
16.
J Biol Chem ; 294(24): 9430-9439, 2019 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-31028175

RESUMEN

Dysfunctional p53 formation and activity can result from aberrant expression and subcellular localization of distinct p53 isoforms or aggregates. Endometrial carcinoma (EC) is a cancer type in which p53 status is correlated with prognosis, and TP53 mutations are a frequent genetic modification. Here we aimed to evaluate the expression patterns of different p53 isoforms and their contributions to the formation and subcellular localization of p53 amyloid aggregates in both EC and endometrial nontumor cell lines. We found that full-length (fl) p53 and a truncated p53 isoform, Δ40p53, resulting from alternative splicing of exon 2 or alternative initiation of translation at ATG-40, are the predominantly expressed p53 variants in EC cells. However, Δ40p53 was the major p53 isoform in endometrial nontumor cells. Immunofluorescence assays revealed that Δ40p53 is mainly localized to cytoplasmic punctate structures of EC cells, resembling solid-phase structures similar to those found in neurodegenerative pathologies. Using light-scattering kinetics, CD, and transmission EM, we noted that the p53 N-terminal transactivation domain significantly reduces aggregation of the WT p53 DNA-binding domain, confirming the higher aggregation tendency of Δ40p53, which lacks this domain. This is the first report of cytoplasmic Δ40p53 in EC cells being a major component of amyloid aggregates. The differential aggregation properties of p53 isoforms in EC cells may open up new avenues in the development of therapeutic strategies that preferentially target specific p53 isoforms to prevent p53 amyloid aggregate formation.


Asunto(s)
Amiloide/química , Amiloidosis , Neoplasias Endometriales/patología , Agregado de Proteínas , Activación Transcripcional , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/metabolismo , Empalme Alternativo , Proteínas Amiloidogénicas/genética , Proteínas Amiloidogénicas/metabolismo , Neoplasias Endometriales/genética , Neoplasias Endometriales/metabolismo , Femenino , Humanos , Conformación Proteica , Isoformas de Proteínas , Células Tumorales Cultivadas , Proteína p53 Supresora de Tumor/genética
17.
Biochim Biophys Acta Mol Cell Res ; 1866(3): 418-429, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30296500

RESUMEN

Colorectal cancer (CRC) is frequently a lethal disease because of metastasis. Actin cytoskeletal rearrangement is an essential step in cell migration during activation of the epithelial-mesenchymal transition (EMT) program, which is associated with metastatic properties of cancer cells. Cofilin-1 protein modulates actin dynamics by promoting actin treadmilling, thereby driving membrane protrusion and cell migration and invasion. However, the role of cofilin-1 during EMT in CRC is unknown. Here, we show that cofilin-1 and p-cofilin-1 have distinct subcellular distribution in EMT cells, as determined by super-resolution microscopy images, indicating distinct roles in different areas of cells. Silenced cofilin-1 cells treated with TGF-ß (siCofilin-1/TGF-ß) evaded p-LIMK2-p-cofilin-1 status, leading to recovery of E-cadherin and claudin-3 at the cell-cell contact and their respective protein levels, actin reorganization, and decreased mesenchymal protein level. Furthermore, siCofilin-1/TGF-ß cells exhibited decreased migration and invasion rates as well as MMP-2 and -9 activity and augmented focal adhesion size. The expression of an inactive phospho-cofilin-1 mimetic (S3E) reduced E-cadherin and claudin-3 in cell-cell contacts, reduced their protein levels, and increased vimentin protein. Based on our findings, we suggest that cofilin-1 is crucial to switching from epithelial to mesenchymal-like morphology and cell migration and invasion by regulating actin cytoskeleton organization through activation of RhoA-LIMK2-cofilin-1 signaling, impacting the cell-cell adhesion organization of colon cancer cells in EMT.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Cofilina 1/metabolismo , Neoplasias Colorrectales/metabolismo , Actinas/metabolismo , Antígenos CD/metabolismo , Cadherinas/metabolismo , Adhesión Celular/fisiología , Línea Celular Tumoral , Movimiento Celular/fisiología , Claudina-3/metabolismo , Neoplasias Colorrectales/patología , Citoesqueleto/metabolismo , Transición Epitelial-Mesenquimal/fisiología , Humanos , Quinasas Lim/metabolismo , Invasividad Neoplásica , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Vimentina/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
18.
Biofactors ; 45(1): 24-34, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30521071

RESUMEN

The effects of radiation are known to be potentiated by N-3 polyunsaturated fatty acids, which modulate several signaling pathways, but the molecular mechanisms through which these fatty acids enhance the anticancer effects of irradiation in colorectal cancer (CRC) treatment remain poorly elucidated. Here, we aimed to ascertain whether the fatty acid docosahexaenoic acid (DHA) exerts a modulating effect on the response elicited by radiation treatment (RT). Two CRC cell lines, Caco-2 and HT-29, were exposed to RT, DHA, or both (DHA + RT) for various times, and then cell viability, proliferation, and clonogenicity were assessed. Moreover, cell cycle, apoptosis, and necrosis were analyzed using flow cytometry, and the involvement of WNT/ß-catenin signaling was investigated by immunofluorescence to determine nuclear ß-catenin, GSK3ß phosphorylation status, and TCF/LEF-activity reporter. DHA and RT applied separately diminished the viability of both HT-29 and Caco-2 cells, and DHA + RT caused a further reduction in proliferation mainly in HT-29 cells, particularly in terms of colony formation. Concomitantly, our results verified cell cycle arrest in G0/G1 phase, a reduction of cyclin D1 expression, and a decrease in GSK3ß phosphorylation after the combined treatment. Furthermore, immunofluorescence quantification revealed that nuclear ß-catenin was increased in RT-exposed cells, but this effect was abrogated in cells exposed to DHA + RT, and the results of TCF/LEF-activity assays confirmed that DHA attenuated the increase in nuclear ß-catenin activity induced by irradiation. Our finding shows that DHA applied in combination with RT enhanced the antitumor effects of irradiation on CRC cells, and that the underlying mechanism involved the WNT/ß-catenin pathway. © 2018 BioFactors, 45(1):24-34, 2019.


Asunto(s)
Puntos de Control del Ciclo Celular/efectos de los fármacos , Ácidos Docosahexaenoicos/farmacología , Rayos gamma , Regulación Neoplásica de la Expresión Génica , Glucógeno Sintasa Quinasa 3 beta/genética , beta Catenina/genética , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Células CACO-2 , Puntos de Control del Ciclo Celular/genética , Puntos de Control del Ciclo Celular/efectos de la radiación , Proliferación Celular/efectos de los fármacos , Proliferación Celular/efectos de la radiación , Ensayo de Unidades Formadoras de Colonias , Ciclina D1/genética , Ciclina D1/metabolismo , Relación Dosis-Respuesta a Droga , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Células HT29 , Humanos , Factor de Unión 1 al Potenciador Linfoide/genética , Factor de Unión 1 al Potenciador Linfoide/metabolismo , Fosforilación/efectos de los fármacos , Fosforilación/efectos de la radiación , Factor 1 de Transcripción de Linfocitos T/genética , Factor 1 de Transcripción de Linfocitos T/metabolismo , Vía de Señalización Wnt , beta Catenina/metabolismo
19.
Sci Rep ; 8(1): 11285, 2018 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-30050103

RESUMEN

Annexin A2 (ANXA2) is upregulated in several malignancies, including colorectal cancer (CRC). However, there is little knowledge on the molecular mechanisms involved to its upregulation. The aim of this study was to identify the mechanism through which ANXA2 overexpression leads to CRC progression and evaluate its potential prognostic value. We used human CRC samples to analyse the correlation between ANXA2 levels and tumour staging. ANXA2 expression was increased in CRC tissues compared to normal colon tissues. In addition, we observe increased ANXA2 levels in stage IV tumours and metastasis, when compared to stage I-III. Whereas E-cadherin, an epithelial marker, decreased in stage II-IV and increased in metastasis. We've also shown that TGF-ß, a classic EMT inductor, caused upregulation of ANXA2, and internalization of both E-cadherin and ANXA2 in CRC cells. ANXA2 silencing hindered TGF-ß-induced invasiveness, and inhibitors of the Src/ANXA2/STAT3 pathway reversed the EMT. In silico analysis confirmed overexpression of ANXA2 and association to the consensus moleculars subtypes (CMS) with the worst prognosis. Therefore, ANXA2 overexpression play a pivotal role in CRC invasiveness through Src/ANXA2/STAT3 pathway activation. The association of ANXA2 to distinct CMSs suggests the possible use of ANXA2 as a prognostic marker or directed target therapy.


Asunto(s)
Anexina A2/metabolismo , Neoplasias Colorrectales/patología , Transición Epitelial-Mesenquimal , Invasividad Neoplásica , Factor de Transcripción STAT3/metabolismo , Familia-src Quinasas/metabolismo , Colon/patología , Humanos , Estadificación de Neoplasias , Factor de Crecimiento Transformador beta/metabolismo
20.
Tumour Biol ; 39(3): 1010428317695914, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28351318

RESUMEN

Citral is a natural compound that has shown cytotoxic and antiproliferative effects on breast and hematopoietic cancer cells; however, there are few studies on melanoma cells. Oxidative stress is known to be involved in all stages of melanoma development and is able to modulate intracellular pathways related to cellular proliferation and death. In this study, we hypothesize that citral exerts its cytotoxic effect on melanoma cells by the modulation of cellular oxidative status and/or intracellular signaling. To test this hypothesis, we investigated the antiproliferative and cytotoxic effects of citral on B16F10 murine melanoma cells evaluating its effects on cellular oxidative stress, DNA damage, cell death, and important signaling pathways, as these pathways, namely, extracellular signal-regulated kinases 1/2 (ERK1/2), AKT, and phosphatidylinositol-3 kinase, are involved in cell proliferation and differentiation. The p53 and nuclear factor kappa B were also investigated due to their ability to respond to intracellular stress. We observed that citral exerted antiproliferative and cytotoxic effects in B16F10; induced oxidative stress, DNA lesions, and p53 nuclear translocation; and reduced nitric oxide levels and nuclear factor kappa B, ERK1/2, and AKT. To investigate citral specificity, we used non-neoplastic human and murine cells, HaCaT (human skin keratinocytes) and NIH-3T3 cells (murine fibroblasts), and observed that although citral effects were not specific for cancer cells, non-neoplastic cells were more resistant to citral than B16F10. These findings highlight the potential clinical utility of citral in melanoma, with a mechanism of action involving the oxidative stress generation, nitric oxide depletion, and interference in signaling pathways related to cell proliferation.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Melanoma Experimental/tratamiento farmacológico , Melanoma/tratamiento farmacológico , Monoterpenos/administración & dosificación , Estrés Oxidativo/efectos de los fármacos , Monoterpenos Acíclicos , Animales , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Humanos , Melanoma/metabolismo , Melanoma/patología , Melanoma Experimental/genética , Melanoma Experimental/patología , Ratones , FN-kappa B/genética , Células 3T3 NIH , Óxido Nítrico/metabolismo , Proteína p53 Supresora de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...