Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ISME J ; 16(1): 233-246, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34294880

RESUMEN

The role of diazotrophs in coral physiology and reef biogeochemistry remains poorly understood, in part because N2 fixation rates and diazotrophic community composition have only been jointly analyzed in the tissue of one tropical coral species. We performed field-based 15N2 tracer incubations during nutrient-replete conditions to measure diazotroph-derived nitrogen (DDN) assimilation into three species of scleractinian coral (Pocillopora acuta, Goniopora columna, Platygyra sinensis). Using multi-marker metabarcoding (16S rRNA, nifH, 18S rRNA), we analyzed DNA- and RNA-based communities in coral tissue and skeleton. Despite low N2 fixation rates, DDN assimilation supplied up to 6% of the holobiont's N demand. Active coral-associated diazotrophs were chiefly Cluster I (aerobes or facultative anaerobes), suggesting that oxygen may control coral-associated diazotrophy. Highest N2 fixation rates were observed in the endolithic community (0.20 µg N cm-2 per day). While the diazotrophic community was similar between the tissue and skeleton, RNA:DNA ratios indicate potential differences in relative diazotrophic activity between these compartments. In Pocillopora, DDN was found in endolithic, host, and symbiont compartments, while diazotrophic nifH sequences were only observed in the endolithic layer, suggesting a possible DDN exchange between the endolithic community and the overlying coral tissue. Our findings demonstrate that coral-associated diazotrophy is significant, even in nutrient-rich waters, and suggest that endolithic microbes are major contributors to coral nitrogen cycling on reefs.


Asunto(s)
Antozoos , Animales , Antozoos/fisiología , Nitrógeno , Fijación del Nitrógeno , Nutrientes , ARN Ribosómico 16S/genética
2.
Mar Pollut Bull ; 173(Pt B): 113135, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34801889

RESUMEN

Crustose coralline algae (CCA) and other encrusting calcifiers drive carbonate production on coral reefs. However, little is known about the rates of growth and calcification of these organisms within degraded turbid reef systems. Here we deployed settlement cards (N = 764) across seven reefs in Singapore for two years to examine spatio-temporal variation in encrusting community composition and CCA carbonate production. Our results showed that CCA was the dominant encrusting taxa (63.7% ± 18.3SD) across reefs. CCA carbonate production rates (0.009-0.052 g cm-2 yr-1) were less than half of those reported for most Indo-Pacific reefs, but similar to other turbid reef systems. Highest CCA carbonate production rates were observed furthest from Singapore's main shipping port, due to a relative increase in CCA cover on the offshore reefs. Our results suggest that proximity to areas of high industrialisation and ship traffic may reduce the cover of encrusting calcifying organisms and CCA production rates which may have negative, long-term implications for the stabilisation of nearshore reefs in urbanised settings.


Asunto(s)
Antozoos , Animales , Calcificación Fisiológica , Carbonatos , Arrecifes de Coral , Singapur
3.
Proc Biol Sci ; 287(1929): 20200541, 2020 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-32546095

RESUMEN

Global sea-level rise (SLR) is projected to increase water depths above coral reefs. Although the impacts of climate disturbance events on coral cover and three-dimensional complexity are well documented, knowledge of how higher sea levels will influence future reef habitat extent and bioconstruction is limited. Here, we use 31 reef cores, coupled with detailed benthic ecological data, from turbid reefs on the central Great Barrier Reef, Australia, to model broad-scale changes in reef habitat following adjustments to reef geomorphology under different SLR scenarios. Model outputs show that modest increases in relative water depth above reefs (Representative Concentration Pathway (RCP) 4.5) over the next 100 years will increase the spatial extent of habitats with low coral cover and generic diversity. More severe SLR (RCP8.5) will completely submerge reef flats and move reef slope coral communities below the euphotic depth, despite the high vertical accretion rates that characterize these reefs. Our findings suggest adverse future trajectories associated with high emission climate scenarios which could threaten turbid reefs globally and their capacity to act as coral refugia from climate change.


Asunto(s)
Arrecifes de Coral , Elevación del Nivel del Mar , Animales , Antozoos , Australia , Cambio Climático , Refugio de Fauna
4.
R Soc Open Sci ; 7(4): 192153, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32431891

RESUMEN

The ecological impacts of coral bleaching on reef communities are well documented, but resultant impacts upon reef-derived sediment supply are poorly quantified. This is an important knowledge gap because these biogenic sediments underpin shoreline and reef island maintenance. Here, we explore the impacts of the 2016 bleaching event on sediment generation by two dominant sediment producers (parrotfish and Halimeda spp.) on southern Maldivian reefs. Our data identifies two pulses of increased sediment generation in the 3 years since bleaching. The first occurred within approximately six months after bleaching as parrotfish biomass and resultant erosion rates increased, probably in response to enhanced food availability. The second pulse occurred 1 to 3 years post-bleaching, after further increases in parrotfish biomass and a major (approx. fourfold) increase in Halimeda spp. abundance. Total estimated sediment generation from these two producers increased from approximately 0.5 kg CaCO3 m-2 yr-1 (pre-bleaching; 2016) to approximately 3.7 kg CaCO3 m-2 yr-1 (post-bleaching; 2019), highlighting the strong links between reef ecology and sediment generation. However, the relevance of this sediment for shoreline maintenance probably diverges with each producer group, with parrotfish-derived sediment a more appropriate size fraction to potentially contribute to local island shorelines.

5.
Nature ; 558(7710): 396-400, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29904103

RESUMEN

Sea-level rise (SLR) is predicted to elevate water depths above coral reefs and to increase coastal wave exposure as ecological degradation limits vertical reef growth, but projections lack data on interactions between local rates of reef growth and sea level rise. Here we calculate the vertical growth potential of more than 200 tropical western Atlantic and Indian Ocean reefs, and compare these against recent and projected rates of SLR under different Representative Concentration Pathway (RCP) scenarios. Although many reefs retain accretion rates close to recent SLR trends, few will have the capacity to track SLR projections under RCP4.5 scenarios without sustained ecological recovery, and under RCP8.5 scenarios most reefs are predicted to experience mean water depth increases of more than 0.5 m by 2100. Coral cover strongly predicts reef capacity to track SLR, but threshold cover levels that will be necessary to prevent submergence are well above those observed on most reefs. Urgent action is thus needed to mitigate climate, sea-level and future ecological changes in order to limit the magnitude of future reef submergence.


Asunto(s)
Antozoos/crecimiento & desarrollo , Cambio Climático/estadística & datos numéricos , Arrecifes de Coral , Agua de Mar/análisis , Animales , Antozoos/metabolismo , Océano Atlántico , Carbonatos/metabolismo , Océano Índico , Modelos Teóricos , Océanos y Mares
6.
Sci Rep ; 6: 29616, 2016 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-27432782

RESUMEN

Mean coral cover has reportedly declined by over 15% during the last 30 years across the central Great Barrier Reef (GBR). Here, we present new data that documents widespread reef development within the more poorly studied turbid nearshore areas (<10 m depth), and show that coral cover on these reefs averages 38% (twice that reported on mid- and outer-shelf reefs). Of the surveyed seafloor area, 11% had distinct reef or coral community cover. Although the survey area represents a small subset of the nearshore zone (15.5 km(2)), this reef density is comparable to that measured across the wider GBR shelf (9%). We also show that cross-shelf coral cover declines with distance from the coast (R(2) = 0.596). Identified coral taxa (21 genera) exhibited clear depth-stratification, corresponding closely to light attenuation and seafloor topography, with reefal development restricted to submarine antecedent bedforms. Data from this first assessment of nearshore reef occurrence and ecology measured across meaningful spatial scales suggests that these coral communities may exhibit an unexpected capacity to tolerate documented declines in water quality. Indeed, these shallow-water nearshore reefs may share many characteristics with their deep-water (>30 m) mesophotic equivalents and may have similar potential as refugia from large-scale disturbances.


Asunto(s)
Antozoos/crecimiento & desarrollo , Arrecifes de Coral , Adaptación Fisiológica , Animales , Antozoos/clasificación , Antozoos/fisiología , Canadá , Conservación de los Recursos Naturales , Ecosistema , Monitoreo del Ambiente , Calidad del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...