Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(17)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37687985

RESUMEN

Group IV alloys of GeSn have been extensively investigated as a competing material alternative in shortwave-to-mid-infrared photodetectors (PDs). The relatively large defect densities present in GeSn alloys are the major challenge in developing practical devices, owing to the low-temperature growth and lattice mismatch with Si or Ge substrates. In this paper, we comprehensively analyze the impact of defects on the performance of GeSn p-i-n homojunction PDs. We first present our theoretical models to calculate various contributing components of the dark current, including minority carrier diffusion in p- and n-regions, carrier generation-recombination in the active intrinsic region, and the tunneling effect. We then analyze the effect of defect density in the GeSn active region on carrier mobilities, scattering times, and the dark current. A higher defect density increases the dark current, resulting in a reduction in the detectivity of GeSn p-i-n PDs. In addition, at low Sn concentrations, defect-related dark current density is dominant, while the generation dark current becomes dominant at a higher Sn content. These results point to the importance of minimizing defect densities in the GeSn material growth and device processing, particularly for higher Sn compositions necessary to expand the cutoff wavelength to mid- and long-wave infrared regime. Moreover, a comparative study indicates that further improvement of the material quality and optimization of device structure reduces the dark current and thereby increases the detectivity. This study provides more realistic expectations and guidelines for evaluating GeSn p-i-n PDs as a competitor to the III-V- and II-VI-based infrared PDs currently on the commercial market.

2.
Artículo en Inglés | MEDLINE | ID: mdl-35848769

RESUMEN

The band offsets for the ß-(Al0.21Ga0.79)2O3/ß-Ga2O3 (010) heterojunction have been experimentally measured by X-ray photoelectron spectroscopy. High-quality ß-(Al0.21Ga0.79)2O3 films were grown by metal-organic chemical vapor deposition for characterization. The indirect band gap of ß-(Al0.21Ga0.79)2O3 was determined by optical transmission to be 4.69 ± 0.03 eV with a direct transition of 5.37 ± 0.03 eV, while ß-Ga2O3 was confirmed to have an indirect band gap of 4.52 ± 0.03 eV with a direct transition of 4.94 ± 0.03 eV. The resulting band alignment at the heterojunction was determined to be of type II with the valence and conduction band edges of ß-(Al0.21Ga0.79)2O3 being -0.26 ± 0.08 and 0.43 ± 0.08 eV, respectively, above those of ß-Ga2O3 (010). These values can now be used to help better design and predict the performance of ß-(AlxGa1-x)2O3 heterojunction-based devices.

3.
Nanoscale Res Lett ; 17(1): 52, 2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35551539

RESUMEN

Piezoresponse force microscopy is used to study the velocity of the polarization domain wall in ultrathin ferroelectric barium titanate (BTO) films grown on strontium titanate (STO) substrates by molecular beam epitaxy. The electric field due to the cone of the atomic force microscope tip is demonstrated as the dominant electric field for domain expansion in thin films at lateral distances greater than about one tip diameter away from the tip. The velocity of the domain wall under the applied electric field by the tip in BTO for thin films (less than 40 nm) followed an expanding process given by Merz's law. The material constants in a fit of the data to Merz's law for very thin films are reported as about 4.2 KV/cm for the activation field, [Formula: see text], and 0.05 nm/s for the limiting velocity, [Formula: see text]. These material constants showed a dependence on the level of strain in the films, but no fundamental dependence on thickness.

4.
ACS Omega ; 2(12): 8751-8759, 2017 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-31457405

RESUMEN

Chitosan (CS)-graphene oxide (GO) composite films were fabricated, characterized, and evaluated as pressure-driven water filtration membranes. GO particles were incorporated into a chitosan polymer solution to form a suspension that was cast as a membrane via evaporative phase inversion allowing for scale-up for cross-flow testing conditions. Morphology and composition results for nano and granular GO in the CS matrix indicate that the particle size of GO impacts the internal membrane morphology as well as the structural order and the chemical composition. Performance of the membranes was evaluated with cationic and anionic organic probe molecules and revealed charge-dependent mechanisms of dye removal. The CSGO membranes had rejections of at least 95% for cationic methylene blue with mass balances obtained from measurements of the feed, concentrate, and permeate. This result suggests the dominant mechanism of removal is physical rejection for both GO particle sizes. For anionic methyl orange, the results indicate sorption as the dominant mechanism of removal, and performance is dependent on both GO particle size and time, with micrometer-scale GO removing 68-99% and nanometer-scale GO showing modest removal of 29-64%. The pure water flux for CSGO composite membranes ranged from 2-4.5 L/m2 h at a transmembrane pressure of 344 kPa (3.44 bar), with pure water permeance ranging from 5.8 × 10-3 to 0.01 L/m2 h kPa (0.58-1.3 L/m2 h bar). Based on the 41 µm membrane thickness obtained from microscopy, the hydraulic permeability ranged from 0.24-0.54 L µm/m2 h kPa (24.4-54.1 L µm/m2 h bar).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...