Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dev Dyn ; 251(8): 1322-1339, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35403290

RESUMEN

BACKGROUND: Understanding how gene regulatory networks (GRNs) control developmental progression is a key to the mechanistic understanding of morphogenesis. The sea urchin larval skeletogenesis provides an excellent platform to tackle this question. In the early stages of sea urchin skeletogenesis, skeletogenic genes are uniformly expressed in the skeletogenic lineage. Yet, during skeletal elongation, skeletogenic genes are expressed in distinct spatial sub-domains. The regulation of differential gene expression during late skeletogenesis is not well understood. RESULTS: Here we reveal the dynamic expression of the skeletogenic regulatory genes that define a specific regulatory state for each pair of skeletal rods, in the sea urchin Paracentrotus lividus. The vascular endothelial growth factor (VEGF) signaling, essential for skeleton formation, specifically controls the migration of cells that form the postoral and distal anterolateral skeletogenic rods. VEGF signaling also controls the expression of regulatory genes in cells at the tips of the postoral rods, including the transcription factors Pitx1 and MyoD1. Pitx1 activity is required for normal skeletal elongation and for the expression of some of VEGF target genes. CONCLUSIONS: Our study illuminates the fine-tuning of the regulatory system during the transition from early to late skeletogenesis that gives rise to rod-specific regulatory states.


Asunto(s)
Erizos de Mar , Factor A de Crecimiento Endotelial Vascular , Animales , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Morfogénesis/fisiología , Erizos de Mar/genética , Erizos de Mar/metabolismo , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
2.
PLoS Comput Biol ; 17(2): e1008780, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33617532

RESUMEN

Biomineralization is the process by which organisms use minerals to harden their tissues and provide them with physical support. Biomineralizing cells concentrate the mineral in vesicles that they secret into a dedicated compartment where crystallization occurs. The dynamics of vesicle motion and the molecular mechanisms that control it, are not well understood. Sea urchin larval skeletogenesis provides an excellent platform for investigating the kinetics of mineral-bearing vesicles. Here we used lattice light-sheet microscopy to study the three-dimensional (3D) dynamics of calcium-bearing vesicles in the cells of normal sea urchin embryos and of embryos where skeletogenesis is blocked through the inhibition of Vascular Endothelial Growth Factor Receptor (VEGFR). We developed computational tools for displaying 3D-volumetric movies and for automatically quantifying vesicle dynamics. Our findings imply that calcium vesicles perform an active diffusion motion in both, calcifying (skeletogenic) and non-calcifying (ectodermal) cells of the embryo. The diffusion coefficient and vesicle speed are larger in the mesenchymal skeletogenic cells compared to the epithelial ectodermal cells. These differences are possibly due to the distinct mechanical properties of the two tissues, demonstrated by the enhanced f-actin accumulation and myosinII activity in the ectodermal cells compared to the skeletogenic cells. Vesicle motion is not directed toward the biomineralization compartment, but the vesicles slow down when they approach it, and probably bind for mineral deposition. VEGFR inhibition leads to an increase of vesicle volume but hardly changes vesicle kinetics and doesn't affect f-actin accumulation and myosinII activity. Thus, calcium vesicles perform an active diffusion motion in the cells of the sea urchin embryo, with diffusion length and speed that inversely correlate with the strength of the actomyosin network. Overall, our studies provide an unprecedented view of calcium vesicle 3D-dynamics and point toward cytoskeleton remodeling as an important effector of the motion of mineral-bearing vesicles.


Asunto(s)
Biomineralización , Calcio/metabolismo , Regulación del Desarrollo de la Expresión Génica , Erizos de Mar/fisiología , Actomiosina/química , Actomiosina/metabolismo , Animales , Biología Computacional/métodos , Citoesqueleto/metabolismo , Biología Evolutiva/métodos , Difusión , Ectodermo/metabolismo , Embrión no Mamífero/metabolismo , Endocitosis , Fluoresceínas/química , Cinética , Movimiento (Física) , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo
3.
Dev Biol ; 473: 80-89, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33577829

RESUMEN

Organisms can uptake minerals, shape them in different forms and generate teeth, skeletons or shells that support and protect them. Mineral uptake, trafficking and nucleation are tightly regulated by the biomineralizing cells through networks of specialized proteins. Specifically, matrix metalloproteases (MMPs) digest various extracellular substrates and allow for mineralization in the vertebrates' teeth and bones, but little is known about their role in invertebrates' systems. The sea urchin embryo provides an excellent invertebrate model for genetic and molecular studies of biomineralization. MMP inhibition prevents the growth of the calcite spicules of the sea urchin larval skeleton, however, the molecular mechanisms and genes that underlie this response are not well understood. Here we study the spatial expression and regulation of two membrane type MMPs that were found to be occluded in the sea urchin spicules, Pl-MmpL7 and Pl-MmpL5, and investigate the function of Pl-MmpL7 in skeletogenesis. The inhibition of MMPs does not change the volume of the calcium vesicles in the skeletogenic cells. The expression of Pl-MmpL7 and Pl-MmpL5 is regulated by the Vascular Endothelial Growth Factor (VEGF) signaling, from the time of skeleton initiation and on. The expression of these genes is localized to the subsets of skeletogenic cells where active spicule growth occurs throughout skeletogenesis. Downregulation of Pl-MmpL7 expression delays the growth of the skeletal rods and in some cases, strongly perturbs skeletal shape. The localized expression of Pl-MmpL7 and Pl-MmpL5 to the active growth zone and the effect of Pl-MmpL7 perturbations on skeletal growth, suggest that these genes are essential for normal spicule elongation in the sea urchin embryo.


Asunto(s)
Metaloproteinasas de la Matriz/metabolismo , Erizos de Mar/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Huesos/metabolismo , Calcio/metabolismo , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Larva/metabolismo , Metaloproteinasa 7 de la Matriz/metabolismo , Mesodermo/metabolismo , Erizos de Mar/genética , Transducción de Señal/genética , Factores de Crecimiento Endotelial Vascular/metabolismo
4.
Proc Natl Acad Sci U S A ; 116(25): 12353-12362, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31152134

RESUMEN

Biomineralization is the process by which living organisms use minerals to form hard structures that protect and support them. Biomineralization is believed to have evolved rapidly and independently in different phyla utilizing preexisting components. The mechanistic understanding of the regulatory networks that drive biomineralization and their evolution is far from clear. Sea urchin skeletogenesis is an excellent model system for studying both gene regulation and mineral uptake and deposition. The sea urchin calcite spicules are formed within a tubular cavity generated by the skeletogenic cells controlled by vascular endothelial growth factor (VEGF) signaling. The VEGF pathway is essential for biomineralization in echinoderms, while in many other phyla, across metazoans, it controls tubulogenesis and vascularization. Despite the critical role of VEGF signaling in sea urchin spiculogenesis, the downstream program it activates was largely unknown. Here we study the cellular and molecular machinery activated by the VEGF pathway during sea urchin spiculogenesis and reveal multiple parallels to the regulation of vertebrate vascularization. Human VEGF rescues sea urchin VEGF knockdown, vesicle deposition into an internal cavity plays a significant role in both systems, and sea urchin VEGF signaling activates hundreds of genes, including biomineralization and interestingly, vascularization genes. Moreover, five upstream transcription factors and three signaling genes that drive spiculogenesis are homologous to vertebrate factors that control vascularization. Overall, our findings suggest that sea urchin spiculogenesis and vertebrate vascularization diverged from a common ancestral tubulogenesis program, broadly adapted for vascularization and specifically coopted for biomineralization in the echinoderm phylum.


Asunto(s)
Biomineralización , Erizos de Mar/crecimiento & desarrollo , Factor A de Crecimiento Endotelial Vascular/fisiología , Animales , Calcio/metabolismo , Redes Reguladoras de Genes , Humanos , Neovascularización Fisiológica , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Erizos de Mar/clasificación , Erizos de Mar/genética , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...