Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Cell ; 187(3): 692-711.e26, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38262408

RESUMEN

Transcription factors (TFs) can define distinct cellular identities despite nearly identical DNA-binding specificities. One mechanism for achieving regulatory specificity is DNA-guided TF cooperativity. Although in vitro studies suggest that it may be common, examples of such cooperativity remain scarce in cellular contexts. Here, we demonstrate how "Coordinator," a long DNA motif composed of common motifs bound by many basic helix-loop-helix (bHLH) and homeodomain (HD) TFs, uniquely defines the regulatory regions of embryonic face and limb mesenchyme. Coordinator guides cooperative and selective binding between the bHLH family mesenchymal regulator TWIST1 and a collective of HD factors associated with regional identities in the face and limb. TWIST1 is required for HD binding and open chromatin at Coordinator sites, whereas HD factors stabilize TWIST1 occupancy at Coordinator and titrate it away from HD-independent sites. This cooperativity results in the shared regulation of genes involved in cell-type and positional identities and ultimately shapes facial morphology and evolution.


Asunto(s)
Proteínas de Unión al ADN , Desarrollo Embrionario , Factores de Transcripción , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Sitios de Unión , ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Mesodermo/metabolismo , Factores de Transcripción/metabolismo , Humanos , Animales , Ratones , Extremidades/crecimiento & desarrollo
2.
bioRxiv ; 2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37398193

RESUMEN

Transcription factors (TFs) can define distinct cellular identities despite nearly identical DNA-binding specificities. One mechanism for achieving regulatory specificity is DNA-guided TF cooperativity. Although in vitro studies suggest it may be common, examples of such cooperativity remain scarce in cellular contexts. Here, we demonstrate how 'Coordinator', a long DNA motif comprised of common motifs bound by many basic helix-loop-helix (bHLH) and homeodomain (HD) TFs, uniquely defines regulatory regions of embryonic face and limb mesenchyme. Coordinator guides cooperative and selective binding between the bHLH family mesenchymal regulator TWIST1 and a collective of HD factors associated with regional identities in the face and limb. TWIST1 is required for HD binding and open chromatin at Coordinator sites, while HD factors stabilize TWIST1 occupancy at Coordinator and titrate it away from HD-independent sites. This cooperativity results in shared regulation of genes involved in cell-type and positional identities, and ultimately shapes facial morphology and evolution.

3.
Gastroenterology ; 165(4): 861-873, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37453564

RESUMEN

BACKGROUND & AIMS: Small intestinal neuroendocrine tumor (SI-NET) is a rare disease, but its incidence has increased over the past 4 decades. Understanding the genetic risk factors underlying SI-NETs can help in disease prevention and may provide clinically beneficial markers for diagnosis. Here the results of the largest genome-wide association study of SI-NETs performed to date with 405 cases and 614,666 controls are reported. METHODS: Samples from 307 patients with SI-NETs and 287,137 controls in the FinnGen study were used for the identification of SI-NET risk-associated genetic variants. The results were also meta-analyzed with summary statistics from the UK Biobank (n = 98 patients with SI-NET and n = 327,529 controls). RESULTS: We identified 6 genome-wide significant (P < 5 × 10-8) loci associated with SI-NET risk, of which 4 (near SEMA6A, LGR5, CDKAL1, and FERMT2) are novel and 2 (near LTA4H-ELK and in KIF16B) have been reported previously. Interestingly, the top hit (rs200138614; P = 1.80 × 10-19) was a missense variant (p.Cys712Phe) in the LGR5 gene, a bona-fide marker of adult intestinal stem cells and a potentiator of canonical WNT signaling. The association was validated in an independent Finnish collection of 70 patients with SI-NETs, as well as in the UK Biobank exome sequence data (n = 92 cases and n = 392,814 controls). Overexpression of LGR5 p.Cys712Phe in intestinal organoids abolished the ability of R-Spondin1 to support organoid growth, indicating that the mutation perturbed R-Spondin-LGR5 signaling. CONCLUSIONS: Our study is the largest genome-wide association study to date on SI-NETs and reported 4 new associated genome-wide association study loci, including a novel missense mutation (rs200138614, p.Cys712Phe) in LGR5, a canonical marker of adult intestinal stem cells.


Asunto(s)
Neoplasias Intestinales , Tumores Neuroendocrinos , Adulto , Humanos , Tumores Neuroendocrinos/genética , Tumores Neuroendocrinos/patología , Mutación Missense , Estudio de Asociación del Genoma Completo , Neoplasias Intestinales/genética , Neoplasias Intestinales/patología , Receptores Acoplados a Proteínas G/genética , Cinesinas/genética
4.
Curr Opin Struct Biol ; 71: 171-179, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34364091

RESUMEN

In eukaryotic cells, DNA interacts with two main types of binding proteins: transcription factors and histones. Histones form the core of nucleosomes and display weak sequence preference owing to differences in bendability of different DNA sequences. By contrast, the affinity of transcription factors is highly dependent on DNA sequence - all sequences are bound with moderate affinity, but only few specific sequences are bound more tightly via molecular recognition of the DNA bases. Transcription factors can interact with nucleosomes directly by recognizing nucleosome-associated DNA and also indirectly by recruiting histone-modifying enzymes and nucleosome remodelers. These interactions result in sequence-dependent formation of a pattern of open and closed chromatin, where specific positions are occupied by transcription factors, histone-modifying enzymes, and modified histones. These patterns are then recognized by large DNA-associated macromolecular complexes such as cohesin and RNA polymerase II, which are involved in regulation of higher-order chromatin structure and transcription, respectively. Here, we review recent work that has provided structural and mechanistic insight into the interactions between all these classes of DNA-associated proteins.


Asunto(s)
Nucleosomas , Factores de Transcripción , Cromatina , Ensamble y Desensamble de Cromatina , Histonas/metabolismo , Factores de Transcripción/metabolismo
5.
Genome Res ; 30(7): 962-973, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32703884

RESUMEN

RNA-binding proteins (RBPs) regulate RNA metabolism at multiple levels by affecting splicing of nascent transcripts, RNA folding, base modification, transport, localization, translation, and stability. Despite their central role in RNA function, the RNA-binding specificities of most RBPs remain unknown or incompletely defined. To address this, we have assembled a genome-scale collection of RBPs and their RNA-binding domains (RBDs) and assessed their specificities using high-throughput RNA-SELEX (HTR-SELEX). Approximately 70% of RBPs for which we obtained a motif bound to short linear sequences, whereas ∼30% preferred structured motifs folding into stem-loops. We also found that many RBPs can bind to multiple distinctly different motifs. Analysis of the matches of the motifs in human genomic sequences suggested novel roles for many RBPs. We found that three cytoplasmic proteins-ZC3H12A, ZC3H12B, and ZC3H12C-bound to motifs resembling the splice donor sequence, suggesting that these proteins are involved in degradation of cytoplasmic viral and/or unspliced transcripts. Structural analysis revealed that the RNA motif was not bound by the conventional C3H1 RNA-binding domain of ZC3H12B. Instead, the RNA motif was bound by the ZC3H12B's PilT N terminus (PIN) RNase domain, revealing a potential mechanism by which unconventional RBDs containing active sites or molecule-binding pockets could interact with short, structured RNA molecules. Our collection containing 145 high-resolution binding specificity models for 86 RBPs is the largest systematic resource for the analysis of human RBPs and will greatly facilitate future analysis of the various biological roles of this important class of proteins.


Asunto(s)
Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , ARN/química , ARN/metabolismo , Secuencia de Bases , Genoma Humano , Humanos , Conformación de Ácido Nucleico , Motivos de Nucleótidos , Unión Proteica , Dominios Proteicos , Multimerización de Proteína , Ribonucleasas/química , Ribonucleasas/metabolismo , Técnica SELEX de Producción de Aptámeros
6.
Biotechnol Rep (Amst) ; 27: e00494, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32714852

RESUMEN

Naturally occurring and computationally ab initio designed protein cages can now be considered as extremely suitable materials for new developments in nanotechnology. Via self-assembly from single identical or non-identical protomers large oligomeric particles can be formed. Virus-like particles have today found a number of quite successful applications in the development of new vaccines. Complex chimeric nanoparticles can serve as suitable platforms for the presentation of natural or designed antigens to the immune system of the host. The scaffolds can be cage forming highly symmetric biological macromolecules like lumazine synthase or symmetric self-assembling virus-like particles generated by computational ab initio design. Symmetric nanoparticle carriers display a structurally ordered array of immunogens. This feature can lead to a more favorable interaction with B-cell receptors, in comparison to the administration of single recombinant immunogens. Several pre-clinical animal studies and clinical studies have recently pointed out the efficiency of nanoparticle antigens produced recombinantly in creating strong immune responses against infectious diseases like HIV, Malaria, Borrelia, Influenza.

7.
Front Immunol ; 10: 2770, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31866997

RESUMEN

Upon binding to pathogen or self-derived cytosolic nucleic acids cyclic GMP-AMP synthase (cGAS) triggers the production of cGAMP that further activates transmembrane protein STING. Upon activation STING translocates from ER via Golgi to vesicles. Monogenic STING gain-of-function mutations cause early-onset type I interferonopathy, with disease presentation ranging from fatal vasculopathy to mild chilblain lupus. Molecular mechanisms underlying the variable phenotype-genotype correlation are presently unclear. Here, we report a novel gain-of-function G207E STING mutation causing a distinct phenotype with alopecia, photosensitivity, thyroid dysfunction, and features of STING-associated vasculopathy with onset in infancy (SAVI), such as livedo reticularis, skin vasculitis, nasal septum perforation, facial erythema, and bacterial infections. Polymorphism in TMEM173 and IFIH1 showed variable penetrance in the affected family, implying contribution to varying phenotype spectrum. The G207E mutation constitutively activates inflammation-related pathways in vitro, and causes aberrant interferon signature and inflammasome activation in patient PBMCs. Treatment with Janus kinase 1 and 2 (JAK1/2) inhibitor baricitinib was beneficiary for a vasculitic ulcer, induced hair regrowth and improved overall well-being in one patient. Protein-protein interactions propose impaired cellular trafficking of G207E mutant. These findings reveal the molecular landscape of STING and propose common polymorphisms in TMEM173 and IFIH1 as likely modifiers of the phenotype.


Asunto(s)
Alelos , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Helicasa Inducida por Interferón IFIH1/genética , Proteínas de la Membrana/genética , Mutación , Estudios de Casos y Controles , Consanguinidad , Femenino , Perfilación de la Expresión Génica , Ligamiento Genético , Humanos , Masculino , Linaje , Transcriptoma , Secuenciación Completa del Genoma
8.
Nat Commun ; 10(1): 1252, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30890702

RESUMEN

Clonal hematopoiesis driven by somatic heterozygous TET2 loss is linked to malignant degeneration via consequent aberrant DNA methylation, and possibly to cardiovascular disease via increased cytokine and chemokine expression as reported in mice. Here, we discover a germline TET2 mutation in a lymphoma family. We observe neither unusual predisposition to atherosclerosis nor abnormal pro-inflammatory cytokine or chemokine expression. The latter finding is confirmed in cells from three additional unrelated TET2 germline mutation carriers. The TET2 defect elevates blood DNA methylation levels, especially at active enhancers and cell-type specific regulatory regions with binding sequences of master transcription factors involved in hematopoiesis. The regions display reduced methylation relative to all open chromatin regions in four DNMT3A germline mutation carriers, potentially due to TET2-mediated oxidation. Our findings provide insight into the interplay between epigenetic modulators and transcription factor activity in hematological neoplasia, but do not confirm the putative role of TET2 in atherosclerosis.


Asunto(s)
Aterosclerosis/genética , Metilación de ADN/genética , Proteínas de Unión al ADN/genética , Haploinsuficiencia , Enfermedad de Hodgkin/genética , Proteínas Proto-Oncogénicas/genética , Adulto , Aterosclerosis/patología , Células Cultivadas , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN Metiltransferasa 3A , Proteínas de Unión al ADN/metabolismo , Dioxigenasas , Epigénesis Genética , Femenino , Finlandia , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Hematopoyesis/genética , Enfermedad de Hodgkin/sangre , Enfermedad de Hodgkin/patología , Humanos , Masculino , Fenotipo , Cultivo Primario de Células , Proteínas Proto-Oncogénicas/metabolismo , ARN Interferente Pequeño/metabolismo , Secuenciación Completa del Genoma
9.
Nature ; 562(7725): 76-81, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30250250

RESUMEN

Nucleosomes cover most of the genome and are thought to be displaced by transcription factors in regions that direct gene expression. However, the modes of interaction between transcription factors and nucleosomal DNA remain largely unknown. Here we systematically explore interactions between the nucleosome and 220 transcription factors representing diverse structural families. Consistent with earlier observations, we find that the majority of the studied transcription factors have less access to nucleosomal DNA than to free DNA. The motifs recovered from transcription factors bound to nucleosomal and free DNA are generally similar. However, steric hindrance and scaffolding by the nucleosome result in specific positioning and orientation of the motifs. Many transcription factors preferentially bind close to the end of nucleosomal DNA, or to periodic positions on the solvent-exposed side of the DNA. In addition, several transcription factors usually bind to nucleosomal DNA in a particular orientation. Some transcription factors specifically interact with DNA located at the dyad position at which only one DNA gyre is wound, whereas other transcription factors prefer sites spanning two DNA gyres and bind specifically to each of them. Our work reveals notable differences in the binding of transcription factors to free and nucleosomal DNA, and uncovers a diverse interaction landscape between transcription factors and the nucleosome.


Asunto(s)
Nucleosomas/metabolismo , Factores de Transcripción/metabolismo , Animales , Secuencia de Bases , ADN/química , ADN/genética , ADN/metabolismo , Humanos , Ratones , Modelos Moleculares , Nucleosomas/química , Nucleosomas/genética , Motivos de Nucleótidos , Unión Proteica , Rotación , Técnica SELEX de Producción de Aptámeros , Factores de Transcripción/química , Factores de Transcripción/clasificación
10.
Elife ; 72018 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-29638214

RESUMEN

Most transcription factors (TFs) can bind to a population of sequences closely related to a single optimal site. However, some TFs can bind to two distinct sequences that represent two local optima in the Gibbs free energy of binding (ΔG). To determine the molecular mechanism behind this effect, we solved the structures of human HOXB13 and CDX2 bound to their two optimal DNA sequences, CAATAAA and TCGTAAA. Thermodynamic analyses by isothermal titration calorimetry revealed that both sites were bound with similar ΔG. However, the interaction with the CAA sequence was driven by change in enthalpy (ΔH), whereas the TCG site was bound with similar affinity due to smaller loss of entropy (ΔS). This thermodynamic mechanism that leads to at least two local optima likely affects many macromolecular interactions, as ΔG depends on two partially independent variables ΔH and ΔS according to the central equation of thermodynamics, ΔG = ΔH - TΔS.


Asunto(s)
Factor de Transcripción CDX2/metabolismo , ADN/metabolismo , Entropía , Proteínas de Homeodominio/metabolismo , Termodinámica , Factor de Transcripción CDX2/química , Factor de Transcripción CDX2/genética , ADN/química , ADN/genética , Proteínas de Homeodominio/química , Proteínas de Homeodominio/genética , Humanos , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica , Especificidad por Sustrato
11.
Science ; 356(6337)2017 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-28473536

RESUMEN

The majority of CpG dinucleotides in the human genome are methylated at cytosine bases. However, active gene regulatory elements are generally hypomethylated relative to their flanking regions, and the binding of some transcription factors (TFs) is diminished by methylation of their target sequences. By analysis of 542 human TFs with methylation-sensitive SELEX (systematic evolution of ligands by exponential enrichment), we found that there are also many TFs that prefer CpG-methylated sequences. Most of these are in the extended homeodomain family. Structural analysis showed that homeodomain specificity for methylcytosine depends on direct hydrophobic interactions with the methylcytosine 5-methyl group. This study provides a systematic examination of the effect of an epigenetic DNA modification on human TF binding specificity and reveals that many developmentally important proteins display preference for mCpG-containing sequences.


Asunto(s)
Citosina/química , Metilación de ADN , Fosfatos de Dinucleósidos/química , Epigénesis Genética , Factores de Transcripción/química , Islas de CpG , ADN/química , Genoma Humano , Humanos , Unión Proteica , Dominios Proteicos , Técnica SELEX de Producción de Aptámeros , Factores de Transcripción/clasificación
12.
Curr Opin Struct Biol ; 47: 1-8, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28349863

RESUMEN

In prokaryotes, individual transcription factors (TFs) can recognize long DNA motifs that are alone sufficient to define the genes that they induce or repress. In contrast, in higher organisms that have larger genomes, TFs recognize sequences that are too short to define unique genomic positions. In addition, development of multicellular organisms requires molecular systems that are capable of executing combinatorial logical operations. Co-operative recognition of DNA by multiple TFs allows both definition of unique genomic positions in large genomes, and complex information processing at the level of individual regulatory elements. The TFs can co-operate in multiple different ways, and the precise mechanism used for co-operation determines important features of the regulatory interactions. Here, we present an overview of the structural basis of the different mechanisms by which TFs can cooperate, focusing on insight from recent functional studies and structural analyses of specific TF-TF-DNA complexes.


Asunto(s)
ADN/química , Estructura Molecular , Factores de Transcripción/química , Sitios de Unión , ADN/genética , ADN/metabolismo , Complejos Multiproteicos , Nucleosomas , Motivos de Nucleótidos , Unión Proteica , Relación Estructura-Actividad , Factores de Transcripción/metabolismo
13.
J Allergy Clin Immunol ; 140(3): 782-796, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28115215

RESUMEN

BACKGROUND: The nuclear factor κ light-chain enhancer of activated B cells (NF-κB) signaling pathway is a key regulator of immune responses. Accordingly, mutations in several NF-κB pathway genes cause immunodeficiency. OBJECTIVE: We sought to identify the cause of disease in 3 unrelated Finnish kindreds with variable symptoms of immunodeficiency and autoinflammation. METHODS: We applied genetic linkage analysis and next-generation sequencing and functional analyses of NFKB1 and its mutated alleles. RESULTS: In all affected subjects we detected novel heterozygous variants in NFKB1, encoding for p50/p105. Symptoms in variant carriers differed depending on the mutation. Patients harboring a p.I553M variant presented with antibody deficiency, infection susceptibility, and multiorgan autoimmunity. Patients with a p.H67R substitution had antibody deficiency and experienced autoinflammatory episodes, including aphthae, gastrointestinal disease, febrile attacks, and small-vessel vasculitis characteristic of Behçet disease. Patients with a p.R157X stop-gain experienced hyperinflammatory responses to surgery and showed enhanced inflammasome activation. In functional analyses the p.R157X variant caused proteasome-dependent degradation of both the truncated and wild-type proteins, leading to a dramatic loss of p50/p105. The p.H67R variant reduced nuclear entry of p50 and showed decreased transcriptional activity in luciferase reporter assays. The p.I553M mutation in turn showed no change in p50 function but exhibited reduced p105 phosphorylation and stability. Affinity purification mass spectrometry also demonstrated that both missense variants led to altered protein-protein interactions. CONCLUSION: Our findings broaden the scope of phenotypes caused by mutations in NFKB1 and suggest that a subset of autoinflammatory diseases, such as Behçet disease, can be caused by rare monogenic variants in genes of the NF-κB pathway.


Asunto(s)
Enfermedades Autoinmunes/genética , Síndromes de Inmunodeficiencia/genética , FN-kappa B/genética , Adulto , Anciano , Línea Celular , Niño , Femenino , Heterocigoto , Humanos , Inflamación/genética , Leucocitos Mononucleares/metabolismo , Masculino , Persona de Mediana Edad , Mutación , Fenotipo
14.
Nat Commun ; 6: 10050, 2015 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-26632596

RESUMEN

The mammalian cell cycle is controlled by the E2F family of transcription factors. Typical E2Fs bind to DNA as heterodimers with the related dimerization partner (DP) proteins, whereas the atypical E2Fs, E2F7 and E2F8 contain two DNA-binding domains (DBDs) and act as repressors. To understand the mechanism of repression, we have resolved the structure of E2F8 in complex with DNA at atomic resolution. We find that the first and second DBDs of E2F8 resemble the DBDs of typical E2F and DP proteins, respectively. Using molecular dynamics simulations, biochemical affinity measurements and chromatin immunoprecipitation, we further show that both atypical and typical E2Fs bind to similar DNA sequences in vitro and in vivo. Our results represent the first crystal structure of an E2F protein with two DBDs, and reveal the mechanism by which atypical E2Fs can repress canonical E2F target genes and exert their negative influence on cell cycle progression.


Asunto(s)
Proteínas de Unión al ADN/química , ADN/metabolismo , Factores de Transcripción E2F/química , Familia de Multigenes , Cristalografía por Rayos X , ADN/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción E2F/genética , Factores de Transcripción E2F/metabolismo , Humanos , Simulación de Dinámica Molecular , Estructura Terciaria de Proteína , Especificidad de la Especie
15.
Nature ; 527(7578): 384-8, 2015 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-26550823

RESUMEN

Gene expression is regulated by transcription factors (TFs), proteins that recognize short DNA sequence motifs. Such sequences are very common in the human genome, and an important determinant of the specificity of gene expression is the cooperative binding of multiple TFs to closely located motifs. However, interactions between DNA-bound TFs have not been systematically characterized. To identify TF pairs that bind cooperatively to DNA, and to characterize their spacing and orientation preferences, we have performed consecutive affinity-purification systematic evolution of ligands by exponential enrichment (CAP-SELEX) analysis of 9,400 TF-TF-DNA interactions. This analysis revealed 315 TF-TF interactions recognizing 618 heterodimeric motifs, most of which have not been previously described. The observed cooperativity occurred promiscuously between TFs from diverse structural families. Structural analysis of the TF pairs, including a novel crystal structure of MEIS1 and DLX3 bound to their identified recognition site, revealed that the interactions between the TFs were predominantly mediated by DNA. Most TF pair sites identified involved a large overlap between individual TF recognition motifs, and resulted in recognition of composite sites that were markedly different from the individual TF's motifs. Together, our results indicate that the DNA molecule commonly plays an active role in cooperative interactions that define the gene regulatory lexicon.


Asunto(s)
ADN/genética , ADN/metabolismo , Especificidad por Sustrato , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Sitios de Unión/genética , Cristalografía por Rayos X , Regulación de la Expresión Génica/genética , Humanos , Datos de Secuencia Molecular , Motivos de Nucleótidos/genética , Reproducibilidad de los Resultados , Especificidad por Sustrato/genética
16.
Elife ; 42015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25779349

RESUMEN

Divergent morphology of species has largely been ascribed to genetic differences in the tissue-specific expression of proteins, which could be achieved by divergence in cis-regulatory elements or by altering the binding specificity of transcription factors (TFs). The relative importance of the latter has been difficult to assess, as previous systematic analyses of TF binding specificity have been performed using different methods in different species. To address this, we determined the binding specificities of 242 Drosophila TFs, and compared them to human and mouse data. This analysis revealed that TF binding specificities are highly conserved between Drosophila and mammals, and that for orthologous TFs, the similarity extends even to the level of very subtle dinucleotide binding preferences. The few human TFs with divergent specificities function in cell types not found in fruit flies, suggesting that evolution of TF specificities contributes to emergence of novel types of differentiated cells.


Asunto(s)
Evolución Biológica , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Drosophila , Duplicación de Gen , Humanos , Ratones , Filogenia , Técnica SELEX de Producción de Aptámeros , Homología de Secuencia de Aminoácido
17.
J Infect Dis ; 211(11): 1842-51, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25492914

RESUMEN

BACKGROUND: Classic Kaposi sarcoma (cKS) is an inflammatory tumor caused by human herpesvirus 8 (HHV-8) commonly observed in elderly men of Mediterranean origin. We studied a Finnish family of 5 affected individuals in 2 generations. Except for atypical mycobacterial infection of the index case, the affected individuals did not have notable histories of infection. METHODS: We performed genome and exome sequencing and mapped shared chromosomal regions to identify genetic predisposition in the family. RESULTS: We identified 12 protein-coding candidate variants that segregated in the 3 affected cousins from whom we had samples. The affected mother of the index case was an obligatory carrier. Among the 12 candidates was a rare heterozygous substitution rs141331848 (c.1337C>T, p.Thr446Ile) in the DNA-binding domain of STAT4. The variant was not present in 242 Finnish control genomes or 180 additional regional controls. Activated T-helper cells from the HHV-8-negative variant carriers showed reduced interferon γ production, compared with age and sex matched wild-type individuals. We screened STAT4 in additional 18 familial KS cases and the variant site from 56 sporadic KS cases but detected no pathogenic mutations. CONCLUSIONS: Our data suggest that STAT4 is a potential cKS-predisposition gene, but further functional and genetic validation is needed.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Factor de Transcripción STAT4/genética , Sarcoma de Kaposi/genética , Anciano , Secuencia de Aminoácidos , Femenino , Ligamiento Genético , Genoma , Humanos , Interferón gamma/inmunología , Leucocitos Mononucleares , Masculino , Persona de Mediana Edad , Datos de Secuencia Molecular , Linaje , Sarcoma de Kaposi/inmunología , Sarcoma de Kaposi/metabolismo , Alineación de Secuencia , Análisis de Secuencia de ADN , Linfocitos T
18.
Cell ; 152(1-2): 327-39, 2013 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-23332764

RESUMEN

Although the proteins that read the gene regulatory code, transcription factors (TFs), have been largely identified, it is not well known which sequences TFs can recognize. We have analyzed the sequence-specific binding of human TFs using high-throughput SELEX and ChIP sequencing. A total of 830 binding profiles were obtained, describing 239 distinctly different binding specificities. The models represent the majority of human TFs, approximately doubling the coverage compared to existing systematic studies. Our results reveal additional specificity determinants for a large number of factors for which a partial specificity was known, including a commonly observed A- or T-rich stretch that flanks the core motifs. Global analysis of the data revealed that homodimer orientation and spacing preferences, and base-stacking interactions, have a larger role in TF-DNA binding than previously appreciated. We further describe a binding model incorporating these features that is required to understand binding of TFs to DNA.


Asunto(s)
Inmunoprecipitación de Cromatina , Modelos Biológicos , Técnica SELEX de Producción de Aptámeros , Factores de Transcripción/metabolismo , Animales , ADN/química , Humanos , Cadenas de Markov , Ratones , Filogenia , Factores de Transcripción/genética
19.
Am J Hum Genet ; 91(3): 520-6, 2012 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-22958902

RESUMEN

Meningiomas are the most common primary tumors of the CNS and account for up to 30% of all CNS tumors. An increased risk of meningiomas has been associated with certain tumor-susceptibility syndromes, especially neurofibromatosis type II, but no gene defects predisposing to isolated familial meningiomas have thus far been identified. Here, we report on a family of five meningioma-affected siblings, four of whom have multiple tumors. No NF2 mutations were identified in the germline or tumors. We combined genome-wide linkage analysis and exome sequencing, and we identified in suppressor of fused homolog (Drosophila), SUFU, a c.367C>T (p.Arg123Cys) mutation segregating with the meningiomas in the family. The variation was not present in healthy controls, and all seven meningiomas analyzed displayed loss of the wild-type allele according to the classic two-hit model for tumor-suppressor genes. In silico modeling predicted the variant to affect the tertiary structure of the protein, and functional analyses showed that the activity of the altered SUFU was significantly reduced and therefore led to dysregulated hedgehog (Hh) signaling. SUFU is a known tumor-suppressor gene previously associated with childhood medulloblastoma predisposition. Our genetic and functional analyses indicate that germline mutations in SUFU also predispose to meningiomas, particularly to multiple meningiomas. It is possible that other genic mutations resulting in aberrant activation of the Hh pathway might underlie meningioma predisposition in families with an unknown etiology.


Asunto(s)
Proteínas Represoras/genética , Adulto , Anciano , Femenino , Genes de la Neurofibromatosis 2 , Humanos , Masculino , Neoplasias Meníngeas/genética , Meningioma/genética , Persona de Mediana Edad , Modelos Moleculares , Mutación , Linaje
20.
FEBS J ; 279(16): 2940-56, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22741949

RESUMEN

All drosophilid alcohol dehydrogenases contain an eight-member water chain connecting the active site with the solvent at the dimer interface. A similar water chain has also been shown to exist in other short-chain dehydrogenase/reductase (SDR) enzymes, including therapeutically important SDRs. The role of this water chain in the enzymatic reaction is unknown, but it has been proposed to be involved in a proton relay system. In the present study, a connecting link in the water chain was removed by mutating Thr114 to Val114 in Scaptodrosophila lebanonensis alcohol dehydrogenase (SlADH). This threonine is conserved in all drosophilid alcohol dehydrogenases but not in other SDRs. X-ray crystallography of the SlADH(T114V) mutant revealed a broken water chain, the overall 3D structure of the binary enzyme-NAD(+) complex was almost identical to the wild-type enzyme (SlADH(wt) ). As for the SlADH(wt) , steady-state kinetic studies revealed that catalysis by the SlADH(T114V) mutant was consistent with a compulsory ordered reaction mechanism where the co-enzyme binds to the free enzyme. The mutation caused a reduction of the k(on) velocity for NAD(+) and its binding strength to the enzyme, as well as the rate of hydride transfer (k) in the ternary enzyme-NAD(+) -alcohol complex. Furthermore, it increased the pK(a) value of the group in the binary enzyme-NAD(+) complex that regulates the k(on) velocity of alcohol and alcohol-competitive inhibitors. Overall, the results indicate that an intact water chain is essential for optimal enzyme activity and participates in a proton relay system during catalysis.


Asunto(s)
Alcohol Deshidrogenasa/química , Alcohol Deshidrogenasa/metabolismo , Agua/química , Alcohol Deshidrogenasa/antagonistas & inhibidores , Alcohol Deshidrogenasa/genética , Alcoholes/metabolismo , Animales , Dominio Catalítico , Cristalografía por Rayos X , Drosophilidae , Concentración de Iones de Hidrógeno , Cinética , Modelos Moleculares , Conformación Molecular , Treonina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...