Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mar Biotechnol (NY) ; 26(2): 223-229, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38345665

RESUMEN

Reef-building corals are a fundamental pillar of coral reef ecosystems in tropical and subtropical shallow environments. Corals harbor symbiotic dinoflagellates belonging to the family Symbiodiniaceae, commonly known as zooxanthellae. Extensive research has been conducted on this symbiotic relationship, yet the fundamental information about the distribution and localization of Symbiodiniaceae cells in corals is still limited. This information is crucial to understanding the mechanism underlying the metabolite exchange between corals and their algal symbionts, as well as the metabolic flow within holobionts. To examine the distribution of Symbiodiniaceae cells within corals, in this study, we used fluorescence imaging and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MS-Imaging) on branches of the Acropora tenuis coral. We successfully prepared frozen sections of the coral for molecular imaging without fixing or decalcifying the coral branches. By combining the results of MS-Imaging with that of the fluorescence imaging, we determined that the algal Symbiodiniaceae symbionts were not only localized in the tentacle and surface region of the coral branches but also inhabited the in inner parts. Therefore, the molecular imaging technique used in this study could be valuable to further investigate the molecular dynamics between corals and their symbionts.


Asunto(s)
Antozoos , Dinoflagelados , Microalgas , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Simbiosis , Antozoos/metabolismo , Animales , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Microalgas/metabolismo , Arrecifes de Coral , Imagen Molecular/métodos
2.
Lipids ; 59(2): 55-63, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38299442

RESUMEN

Type 2 diabetes mellitus (T2DM) is a highly prevalent metabolic disorder. Insulin resistance and oxidative stress are associated with T2DM development. The hypothesis that patients with T2DM show excess accumulation of lipids, such as ceramides (Cers) and diacylglycerols (DAGs), in their skeletal muscles has been widely supported; however, detailed lipidomic data at the molecular species level are limited. Therefore, in this study, we aimed to investigate the in vitro dynamics of total lipids, including phospholipids (PLs), sphingolipids, and neutral lipids, in palmitic acid-induced insulin-resistant C2C12 skeletal muscle cells. Our data demonstrated that the profiles of not only Cers and DAGs but also those of PLs showed considerably differences after palmitate treatment. We found that PL synthesis reduced and PL degradation increased after palmitate treatment. These findings may aid in the development of treatments to ameliorate muscle dysfunction caused by lipid accumulation in muscles.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Humanos , Palmitatos/farmacología , Fosfolípidos/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Lipidómica , Transducción de Señal , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Resistencia a la Insulina/fisiología , Ceramidas/metabolismo
3.
Front Physiol ; 14: 1178869, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37346489

RESUMEN

Organisms adapt to changes in their environment to survive. The emergence of predators is an example of environmental change, and organisms try to change their external phenotypic systems and physiological mechanisms to adapt to such changes. In general, prey exhibit different phenotypes to predators owing to historically long-term prey-predator interactions. However, when presented with a novel predator, the extent and rate of phenotypic plasticity in prey are largely unknown. Therefore, exploring the physiological adaptive response of organisms to novel predators is a crucial topic in physiology and evolutionary biology. Counterintuitively, Xenopus tropicalis tadpoles do not exhibit distinct external phenotypes when exposed to new predation threats. Accordingly, we examined the brains of X. tropicalis tadpoles to understand their response to novel predation pressure in the absence of apparent external morphological adaptations. Principal component analysis of fifteen external morphological parameters showed that each external morphological site varied nonlinearly with predator exposure time. However, the overall percentage change in principal components during the predation threat (24 h) was shown to significantly (p < 0.05) alter tadpole morphology compared with that during control or 5-day out treatment (5 days of exposure to predation followed by 5 days of no exposure). However, the adaptive strategy of the altered sites was unknown because the changes were not specific to a particular site but were rather nonlinear in various sites. Therefore, RNA-seq, metabolomic, Ingenuity Pathway Analysis, and Kyoto Encyclopedia of Genes and Genomes analyses were performed on the entire brain to investigate physiological changes in the brain, finding that glycolysis-driven ATP production was enhanced and ß-oxidation and the tricarboxylic acid cycle were downregulated in response to predation stress. Superoxide dismutase was upregulated after 6 h of exposure to new predation pressure, and radical production was reduced. Hemoglobin was also increased in the brain, forming oxyhemoglobin, which is known to scavenge hydroxyl radicals in the midbrain and hindbrain. These suggest that X. tropicalis tadpoles do not develop external morphological adaptations that are positively correlated with predation pressure, such as tail elongation, in response to novel predators; however, they improve their brain functionality when exposed to a novel predator.

4.
Mar Biotechnol (NY) ; 24(6): 1158-1167, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36322281

RESUMEN

The toxic flatworm, Planocera multitentaculata, possesses highly concentrated tetrodotoxin (TTX), also known as pufferfish toxin, throughout its life cycle, including the egg and larval stages. Additionally, TTX analogues, 5,6,11-trideoxyTTX and 11-norTTX-6(S)-ol, have also been detected in the flatworm. The high concentration of TTX in the eggs and larvae appears to be for protection against predation, and 11-norTTX-6(S)-ol in the pharyngeal tissue in the adults is likely used to sedate or kill prey during predation. However, information on the role of 5,6,11-trideoxyTTX, a potential important biosynthetic intermediate of TTX, in the toxic flatworm is lacking. Here, we aimed to determine the region of localization of TTX and its analogues in the flatworm body, understand their pharmacokinetics during maturation, and speculate on their function. Flatworm specimens in four stages of maturity, namely juvenile, mating, spawning, and late spawning, were subjected to LC-MS/MS analysis, using the pharyngeal tissue, oocytes in seminal receptacle, sperm, and tissue from 12 other sites. Although TTX was consistently high in the pharyngeal tissue throughout maturation, it was extremely high in the oocytes during the spawning period. Meanwhile, 5,6,11-trideoxyTTX was almost undetectable in the pharyngeal part throughout the maturation but was very abundant in the oocytes during spawning. 11-norTTX-6(S)-ol consistently localized in the pharyngeal tissue. Although the localization of TTX and its analogues was approximately consistent with the MS imaging data, TTX and 11-norTTX-6(S)-ol were found to be highly localized in the parenchyma surrounding the pharynx, which suggests the parenchyma is involved in the accumulation and production of TTXs.


Asunto(s)
Platelmintos , Animales , Masculino , Tetrodotoxina , Cromatografía Liquida/métodos , Distribución Tisular , Espectrometría de Masas en Tándem/métodos , Semen/metabolismo , Larva/metabolismo
5.
Sci Rep ; 12(1): 6720, 2022 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-35469048

RESUMEN

Growth hormone (GH) transgenesis can be used to manipulate the growth performance of fish and mammals. In this study, homozygous and hemizygous GH-transgenic amago salmon (Oncorhynchus masou ishikawae) derived from a single female exhibited hypoglycemia. Proteomic and signal network analyses using iTRAQ indicated a decreased NAD+/NADH ratio in transgenic fish, indicative of reduced mitochondrial ND1 function and ROS levels. Mitochondrial DNA sequencing revealed that approximately 28% of the deletion mutations in the GH homozygous- and hemizygous-female-derived mitochondrial DNA occurred in ND1. These fish also displayed decreased ROS levels. Our results indicate that GH transgenesis in amago salmon may induce specific deletion mutations that are maternally inherited over generations and alter energy production.


Asunto(s)
Hormona de Crecimiento Humana , Oncorhynchus , Animales , Animales Modificados Genéticamente , ADN Mitocondrial/genética , Femenino , Técnicas de Transferencia de Gen , Hormona del Crecimiento/genética , Hormona de Crecimiento Humana/genética , Mamíferos/genética , Herencia Materna , Mutación , Proteómica , Especies Reactivas de Oxígeno , Salmón/genética
6.
J Nutr Sci Vitaminol (Tokyo) ; 68(1): 23-31, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35228492

RESUMEN

Skeletal muscle is the largest organ in the body and has a broad range of plasticity, undergoing atrophy in response to aging or disease and hypertrophy in response to nutritional supplements or exercise. Loss of skeletal muscle mass and force increases the risk of falls, impairs mobility, and leads to reduced quality of life. In a previous study, we demonstrated that taking in Alaska pollock protein (APP) for only 7 d increased the gastrocnemius muscle mass in rats. This study was conducted to identify hypertrophic myofibers and analyze how hypertrophy occurs within them. Twenty male rats were randomly divided into two groups and administered a diet of casein or APP for 7 d. The expression of each myosin heavy chain (MyHC) isoform in a cross-sectional area was then measured. MyHC IIb and IIx isoforms exhibited hypertrophic features in the gastrocnemius muscles of the APP-fed rats. Furthermore, comprehensive proteomic analyses were conducted to identify changes in protein expression due to muscle hypertrophy. Our results, evaluated by pathway analyses, indicated that the activity of the growth factor signaling pathway was significantly impacted by APP consumption. Moreover, APP could promote protein synthesis by activating the protein kinase B/mechanistic target of the rapamycin signaling pathway, which is also promoted by exercise.


Asunto(s)
Proteínas de Peces , Proteínas Proto-Oncogénicas c-akt , Animales , Proteínas de Peces/metabolismo , Hipertrofia/metabolismo , Masculino , Músculo Esquelético/metabolismo , Cadenas Pesadas de Miosina/metabolismo , Isoformas de Proteínas/metabolismo , Proteómica , Proteínas Proto-Oncogénicas c-akt/metabolismo , Calidad de Vida , Ratas , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
7.
Biosci Biotechnol Biochem ; 86(6): 730-738, 2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35285857

RESUMEN

Muscle atrophy is a major health problem that needs effective prevention and treatment approaches. Chronic exercise, an effective treatment strategy for atrophy, promotes muscle hypertrophy, which leads to dynamic metabolic changes; however, the metabolic changes vary among myofiber types. To investigate local metabolic changes due to chronic exercise, we utilized comprehensive proteome and mass spectrometry (MS) imaging analyses. Our training model exhibited hypertrophic features only in glycolytic myofibers. The proteome analyses demonstrated that exercise promoted anabolic pathways, such as protein synthesis, and significant changes in lipid metabolism, but not in glucose metabolism. Furthermore, the fundamental energy sources, glycogen, neutral lipids, and ATP, were sensitive to exercise, and the changes in these sources differed between glycolytic and oxidative myofibers. MS imaging revealed that the lipid composition differs among myofibers; arachidonic acid might be an effective target for promoting lipid metabolism during muscle hypertrophy in oxidative myofibers.


Asunto(s)
Músculo Esquelético , Proteoma , Humanos , Hipertrofia/metabolismo , Hipertrofia/patología , Espectrometría de Masas , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Proteoma/metabolismo
8.
J Oleo Sci ; 70(7): 937-946, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34193670

RESUMEN

Muscle atrophy refers to skeletal muscle loss and dysfunction that affects glucose and lipid metabolism. Moreover, muscle atrophy is manifested in cancer, diabetes, and obesity. In this study, we focused on lipid metabolism during muscle atrophy. We observed that the gastrocnemius muscle was associated with significant atrophy with 8 days of immobilization of hind limb joints and that muscle atrophy occurred regardless of the muscle fiber type. Further, we performed lipid analyses using thin layer chromatography, liquid chromatography-mass spectrometry, and mass spectrometry imaging. Total amounts of triacylglycerol, phosphatidylserine, and sphingomyelin were found to be increased in the immobilized muscle. Additionally, we found that specific molecular species of phosphatidylserine, phosphatidylcholine, and sphingomyelin were increased by immobilization. Furthermore, the expression of adipose triglyceride lipase and the activity of cyclooxygenase-2 were significantly reduced by atrophy. From these results, it was revealed that lipid accumulation and metabolic changes in specific fatty acids occur during disuse muscle atrophy. The present study holds implications in validating preventive treatment strategies for muscle atrophy.


Asunto(s)
Atrofia Muscular/metabolismo , Fosfatidilcolinas/metabolismo , Fosfatidilserinas/metabolismo , Restricción Física/fisiología , Esfingomielinas/metabolismo , Triglicéridos/metabolismo , Animales , Cromatografía Liquida , Cromatografía en Capa Delgada , Ciclooxigenasa 2/metabolismo , Lipasa/metabolismo , Masculino , Espectrometría de Masas , Músculo Esquelético/química , Fosfatidilcolinas/análisis , Fosfatidilserinas/análisis , Ratas Sprague-Dawley , Restricción Física/efectos adversos , Esfingomielinas/análisis , Triglicéridos/análisis
9.
J Mass Spectrom ; 55(12): e4670, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33118227

RESUMEN

Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) imaging is an effective tool for investigating the distribution of molecules. However, cryosections are made from non-fixed tissues, causing difficulties in preparing sections from fragile, high-water content tissues such as those from tadpoles. Here, we introduce a new method for preparing cryosections using an adhesive tape followed by transfer onto glass slides for MALDI-MS imaging. Signals obtained from the transferred sections were higher than those from other sections, and the transferred sections had high optical quality. This novel approach could be an effective tool for MALDI-MS imaging of aquatic animals.


Asunto(s)
Técnicas Histológicas/métodos , Imagen Molecular/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Animales , Organismos Acuáticos/fisiología , Larva/citología , Larva/fisiología , Ranidae , Sensibilidad y Especificidad
10.
Aquat Toxicol ; 228: 105623, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32956954

RESUMEN

Trace concentrations of a number of pharmaceutically active compounds have been detected in the aquatic environment in many countries, where they are thought to have the potential to exert adverse effects on non-target organisms. Amiodarone (AMD) is one such high-risk compound commonly used in general hospitals. AMD is known to alter normal thyroid hormone (TH) function, although little information is available regarding the specific mechanism by which this disruption occurs. Anuran tadpole metamorphosis is a TH-controlled developmental process and has proven to be useful as a screening tool for environmental pollutants suspected of disrupting TH functions. In the present study, our objective was to clarify the effects of AMD on Xenopus metamorphosis as well as to assess the bioconcentration of this pharmaceutical in the liver. We found that AMD suppressed spontaneous metamorphosis, including tail regression and hindlimb elongation in pro-metamorphic stage tadpoles, which is controlled by endogenous circulating TH, indicating that AMD is a TH antagonist. In transgenic X. laevis tadpoles carrying plasmid DNA containing TH-responsive element (TRE) and a 5'-upstream promoter region of the TH receptor (TR) ßA1 gene linked to a green fluorescent protein (EGFP) gene, triiodothyronine (T3) exposure induced a strong EGFP expression in the hind limbs, whereas the addition of AMD to T3 suppressed EGFP expression, suggesting that this drug interferes with the binding of T3 to TR, leading to the inhibition of TR-mediated gene expression. We also found AMD to be highly bioconcentrated in the liver of pro-metamorphic X. tropicalis tadpoles, and we monitored hepatic accumulation of this drug using mass spectrometry imaging (MSI). Our findings suggest that AMD imposes potential risk to aquatic wildlife by disrupting TH homeostasis, with further possibility of accumulating in organisms higher up in the food chain.


Asunto(s)
Amiodarona/toxicidad , Bioacumulación , Disruptores Endocrinos/toxicidad , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Larva/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Amiodarona/metabolismo , Animales , Disruptores Endocrinos/metabolismo , Miembro Posterior/efectos de los fármacos , Larva/genética , Larva/metabolismo , Receptores de Hormona Tiroidea/genética , Receptores de Hormona Tiroidea/metabolismo , Triyodotironina/genética , Triyodotironina/metabolismo , Contaminantes Químicos del Agua/metabolismo , Xenopus laevis
11.
Sci Rep ; 10(1): 11737, 2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32678123

RESUMEN

The threat of predation is a driving force in the evolution of animals. We have previously reported that Xenopus laevis enhanced their tail muscles and increased their swimming speeds in the presence of Japanese larval salamander predators. Herein, we investigated the induced gene expression changes in the brains of tadpoles under the threat of predation using 3'-tag digital gene expression profiling. We found that many muscle genes were expressed after 24 h of exposure to predation. Ingenuity pathway analysis further showed that after 24 h of a predation threat, various signal transduction genes were stimulated, such as those affecting the actin cytoskeleton and CREB pathways, and that these might increase microtubule dynamics, axonogenesis, cognition, and memory. To verify the increase in microtubule dynamics, DiI was inserted through the tadpole nostrils. Extension of the axons was clearly observed from the nostril to the diencephalon and was significantly increased (P ≤ 0.0001) after 24 h of exposure to predation, compared with that of the control. The dynamic changes in the signal transductions appeared to bring about new connections in the neural networks, as suggested by the microtubule dynamics. These connections may result in improved memory and cognition abilities, and subsequently increase survivability.


Asunto(s)
Axones/fisiología , Encéfalo/fisiología , Xenopus laevis/fisiología , Animales , Biomarcadores , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Hibridación in Situ , Larva , Transducción de Señal
12.
Foods ; 9(4)2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32244617

RESUMEN

Consumption of fish is rapidly increasing worldwide. It is important to evaluate fish fillet quality because fish undergoes physical and chemical changes during frozen storage. Fish fillets exhibit formaldehyde (FA) accumulation from the decomposition of trimethylamine N-oxide. FA is a powerful protein denaturant; thus, it is important to avoid FA buildup during fish processing to preserve fish quality, especially texture. To determine where FA accumulates, in order to maintain the quality of fish fillets, we performed matrix-assisted laser desorption/ionization mass spectrometry imaging, aiming to identify muscle-derived peptides, which reflect conditions such as denaturation and/or aggregation. We used frozen sections from which lipophilic molecules were washed out and detected various peptide peaks. Furthermore, we tried to identify indices to represent fish fillet softening by protease treatment. We could detect characteristic peaks owing to FA and protease treatment; the findings were consistent with the results of texture profiles showing fish fillet's real solidity. These molecules might thus serve as effective markers to evaluate fish fillet quality.

13.
Foods ; 8(12)2019 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-31810360

RESUMEN

Food contains various compounds, and there are many methods available to analyze each of these components. However, the large amounts of low-molecular-weight metabolites in food, such as amino acids, organic acids, vitamins, lipids, and toxins, make it difficult to analyze the spatial distribution of these molecules. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) imaging is a two-dimensional ionization technology that allows the detection of small metabolites in tissue sections without requiring purification, extraction, separation, or labeling. The application of MALDI-MS imaging in food analysis improves the visualization of these compounds to identify not only the nutritional content but also the geographical origin of the food. In this review, we provide an overview of some recent applications of MALDI-MS imaging, demonstrating the advantages and prospects of this technology compared to conventional approaches. Further development and enhancement of MALDI-MS imaging is expected to offer great benefits to consumers, researchers, and food producers with respect to breeding improvement, traceability, the development of value-added foods, and improved safety assessments.

14.
J Agric Food Chem ; 67(25): 7197-7203, 2019 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-31240934

RESUMEN

Nutritional profiles and consumer preferences differ between wild and farmed fish, and identification of fish sources can be difficult. We analyzed the metabolite molecules of wild and farmed red sea bream ( Pagrus major) to identify specific metabolic differences. The total lipid content and molecular composition of wild and farmed red sea bream muscles were analyzed using thin-layer chromatography and mass spectrometry imaging. Triacylglycerol levels were significantly higher in farmed fish. Wild fish contained saturated-fatty-acid-containing triacylglycerols as a major molecular species, while docosahexaenoic-acid-containing triacylglycerol levels were significantly higher in farmed fish than in wild fish. The localization of each muscle-fiber-type-specific marker demonstrated that wild fish exhibit myosin heavy chain (MHC)-type-IIb-specific phospholipids, while farmed fish exhibit MHC-type-IIa-specific phospholipids in their white muscle. Sodium dodecyl sulfate polyacrylamide gel electrophoresis analyses separated the identified myosins and revealed that farmed fish possess additional myosin isoforms when compared to wild fish. In addition, we found a farmed-fish-specific distribution of anserine in their white muscle. These molecules can be used as new molecular markers for determining the geographic origins of wild versus farmed red sea bream.


Asunto(s)
Dorada/metabolismo , Alimentos Marinos/análisis , Animales , Animales Salvajes/metabolismo , Cromatografía en Capa Delgada , Análisis Discriminante , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Proteínas de Peces/química , Proteínas de Peces/metabolismo , Explotaciones Pesqueras , Espectrometría de Masas/métodos , Músculo Esquelético/química , Músculo Esquelético/metabolismo , Triglicéridos/química , Triglicéridos/metabolismo
15.
J Oleo Sci ; 68(2): 141-148, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30713267

RESUMEN

Alaska pollack protein (APP) was previously shown to reduce serum triacylglycerol and the atherogenic index and significantly increase gastrocnemius muscle mass in rats. To determine which myofibers are involved in this observed hypertrophy, we stained the gastrocnemius muscle with fast and slow fiber-specific antibodies and measured the muscle fiber diameter. We observed muscle hypertrophy in both the fast and slow fibers of APP-fed rats. Although muscle hypertrophy leads to drastic lipid changes, the amount of lipids did not differ significantly between casein-fed and APP-fed rats. To determine the lipid changes at the molecular species level and their localization, we performed matrix-assisted laser desorption/ionization mass spectrometry imaging to visualize lipids in the gastrocnemius muscles. We determined that lipid molecules were significantly changed due to APP feeding. Thus, APP feeding changes muscle lipid metabolism, and these metabolic changes might be related to hypertrophy.


Asunto(s)
Proteínas de Peces/administración & dosificación , Hipertrofia , Metabolismo de los Lípidos , Lípidos/análisis , Músculo Esquelético/metabolismo , Animales , Gadiformes , Masculino , Fibras Musculares de Contracción Rápida/metabolismo , Fibras Musculares de Contracción Lenta/metabolismo , Músculo Esquelético/anomalías , Ratas Sprague-Dawley , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
16.
Rapid Commun Mass Spectrom ; 33(2): 185-192, 2019 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-30367536

RESUMEN

RATIONALE: In skeletal muscles, there are four myofiber types, Types I, IIa, IIx, and IIb, which show different contraction characteristics and have different metabolic statuses. To understand muscle function, it is necessary to analyze myofiber-specific metabolic changes. However, these fibers are heterogeneous and are hard to discriminate by conventional analyses using tissue extracts. In this study, we found myofiber-specific molecules and molecular markers of other cells such as smooth muscle cells, fat cells, and motor neurons, and visualized them within muscle sections. METHODS: We used three different muscle tissues, namely extensor digitorum longus, soleus, and gastrocnemius tissues, from ICR mice. After the muscles had been harvested, cross-sections were prepared using a cryostat and analyzed using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI), and conventional immunofluorescence imaging. RESULTS: By comparing the MALDI MSI results with the immunofluorescence imaging results, we were able to identify each fiber and cell-specific ion. It was especially important that we could find Type IIa and IIb specific ions, because these were difficult to distinguish. CONCLUSIONS: Through MSI analyses, we performed a comprehensive survey to identify cell- and myofiber-specific molecular markers. In conclusion, we assigned muscle fiber Type I, IIa, and IIb-specific molecular ions at m/z 856.6, 872.6, and 683.8, respectively. These molecular markers might be useful for verifying changes that occur due to exercise and/or disease.


Asunto(s)
Biomarcadores/análisis , Fibras Musculares Esqueléticas/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Animales , Biomarcadores/metabolismo , Cromatografía en Capa Delgada , Diglicéridos/análisis , Diglicéridos/metabolismo , Procesamiento de Imagen Asistido por Computador , Lípidos/análisis , Masculino , Ratones Endogámicos ICR , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/química , Músculo Esquelético/metabolismo , Músculo Liso/química , Músculo Liso/metabolismo , Espectrometría de Masas en Tándem
18.
Anal Bioanal Chem ; 410(4): 1333-1340, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29247380

RESUMEN

Thyroid hormones are not only responsible for thermogenesis and energy metabolism in animals, but also have an important role in cell differentiation and development. Amphibian metamorphosis provides an excellent model for studying the remodeling of the body. This metamorphic organ remodeling is induced by thyroid hormones, and a larval body is thus converted into an adult one. The matrix-assisted laser desorption/ionization (MALDI)-mass spectrometry (MS) imaging technology is expected to be a suitable tool for investigating small bioreactive molecules. The present study describes the distribution of the thyroid hormones, i.e., triiodothyronine (T3) and thyroxine (T4) and their inactive form reverse T3 (rT3) in Xenopus tropicalis tadpoles using two different types of imaging techniques, MS/MS and Fourier transform (FT)-MS imaging. As a result of MS/MS imaging, we demonstrated that T3 was mainly distributed in the gills. T4 was faintly localized in the eyes, inner gills, and intestine during metamorphosis. The intensity of T3 in the gills and the intensity of T4 in the body fluids were increased during metamorphosis. Moreover, the localization of the inactive form rT3 was demonstrated to be separate from T3, namely in the intestine and muscles. In addition, FT-MS imaging could utilize simultaneous imaging including thyroid hormone. This is the first report to demonstrate the molecular distribution of thyroid hormones themselves and to discriminate T3, T4, and rT3 in animal tissues.


Asunto(s)
Larva/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Espectrometría de Masas en Tándem/métodos , Tiroxina/metabolismo , Triyodotironina/metabolismo , Xenopus/crecimiento & desarrollo , Animales , Espectroscopía Infrarroja por Transformada de Fourier
19.
Biol Open ; 6(11): 1726-1733, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-29141955

RESUMEN

Predator-induced phenotypic plasticity is the ability of prey to adapt to their native predator. However, owing to environmental changes, encounters with unknown predators are inevitable. Therefore, study of prey and non-native predator interaction will reveal the primary stages of adaptive strategies in prey-predator interactions in the context of evolutionary processes. Here, Xenopus tadpoles exposed to a non-native predator, a larval salamander, showed a significant increase in body weight and tail length to body length ratio. The Tmax2 test indicated a significant enhancement of the tail muscle and decrease in the relative ventral fin height in tadpoles exposed to predation risk, leading to significantly higher average swimming speeds. The analysis of muscle-related metabolites revealed that sarcosine increased significantly in tadpoles exposed to non-native predators. Multiple linear regression analysis of the fast-start swimming pattern showed that the fast-start swimming speed was determined by the time required for a tadpole to bend its body away from the threat (C-start) and the angle at which it was bent. In conclusion, morphological changes in tadpoles were functionally adaptive and induced by survival behaviors of Xenopus tadpoles against non-native predators.

20.
Biol Open ; 5(9): 1252-9, 2016 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-27422901

RESUMEN

In developmental and cell biology it is crucial to evaluate the dynamic profiles of metabolites. An emerging frog model system using Xenopus tropicalis, whose genome sequence and inbred strains are available, is now ready for metabolomics investigation in amphibians. In this study we applied matrix-assisted laser desorption/ionization (MALDI)-mass spectrometry imaging (MSI) analysis to identify and visualize metabolomic molecular markers in tadpoles of Xenopus tropicalis We detected tissue-specific peaks and visualized their distribution in tissues, and distinguished 19 tissues and their specific peaks. We identified, for the first time, some of their molecular localizations via tandem mass spectrometric analysis: hydrocortisone in artery, L-DOPA in rhombencephalon, taurine in eye, corticosterone in gill, heme in heart, inosine monophosphate and carnosine in muscle, dopamine in nerves, and phosphatidylethanolamine (16:0/20:4) in pharynx. This is the first MALDI-MSI study of X. tropicalis tadpoles, as in small tadpoles it is hard to distinguish and dissect the various organs. Furthermore, until now there has been no data about the metabolomic profile of each organ. Our results suggest that MALDI-MSI is potentially a powerful tool for examining the dynamics of metabolomics in metamorphosis as well as conformational changes due to metabolic changes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...