Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Curr Biol ; 33(10): 1967-1981.e8, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37119817

RESUMEN

Cytoplasmic stress granules (SGs) are phase-separated membrane-less organelles that form in response to various stress stimuli. SGs are mainly composed of non-canonical stalled 48S preinitiation complexes. In addition, many other proteins also accumulate into SGs, but the list is still incomplete. SG assembly suppresses apoptosis and promotes cell survival under stress. Furthermore, hyperformation of SGs is frequently observed in various human cancers and accelerates tumor development and progression by reducing stress-induced damage of cancer cells. Therefore, they are of clinical importance. However, the precise mechanism underlying SG-mediated inhibition of apoptosis remains ill-defined. Here, using a proximity-labeling proteomic approach, we comprehensively analyzed SG-resident proteins and identified the executioner caspases, caspase-3 and -7, as SG components. We demonstrate that accumulation of caspase-3/7 into SGs is mediated by evolutionarily conserved amino acid residues within their large catalytic domains and inhibits caspase activities and consequent apoptosis induced by various stresses. Expression of an SG-localization-deficient caspase-3 mutant in cells largely counteracted the anti-apoptotic effect of SGs, whereas enforced relocalization of the caspase-3 mutant to SGs restored it. Thus, SG-mediated sequestration of executioner caspases is a mechanism underlying the broad cytoprotective function of SGs. Furthermore, using a mouse xenograft tumor model, we show that this mechanism prevents cancer cells from apoptosis in tumor tissues, thereby promoting cancer progression. Our results reveal the functional crosstalk between SG-mediated cell survival and caspase-mediated cell death signaling pathways and delineate a molecular mechanism that dictates cell-fate decisions under stress and promotes tumorigenesis.


Asunto(s)
Caspasas , Proteómica , Humanos , Caspasa 3/metabolismo , Caspasa 3/farmacología , Caspasas/metabolismo , Caspasas/farmacología , Gránulos de Estrés , Gránulos Citoplasmáticos/metabolismo , Apoptosis , Estrés Fisiológico
2.
FEBS Open Bio ; 13(4): 684-700, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36776127

RESUMEN

Proper regulation of apoptotic cell death is crucial for normal development and homeostasis in multicellular organisms and is achieved by the balance between pro-apoptotic processes, such as caspase activation, and pro-survival signaling, such as extracellular signal-regulated kinase (ERK) activation. However, the functional interplay between these opposing signaling pathways remains incompletely understood. Here, we identified MAPK/ERK kinase (MEK) 1, a central component of the ERK pathway, as a specific substrate for the executioner caspase-3. During apoptosis, MEK1 is cleaved at an evolutionarily conserved Asp282 residue in the kinase domain, thereby losing its catalytic activity. Gene knockout experiments showed that MEK1 cleavage was mediated by caspase-3, but not by the other executioner caspases, caspase-6 or -7. Following exposure of cells to osmotic stress, elevated ERK activity gradually decreased, and this was accompanied by increased cleavage of MEK1. In contrast, the expression of a caspase-uncleavable MEK1(D282N) mutant in cells maintained stress-induced ERK activity and thereby attenuated apoptotic cell death. Thus, caspase-3-mediated, proteolytic inhibition of MEK1 sensitizes cells to apoptosis by suppressing pro-survival ERK signaling. Furthermore, we found that a RASopathy-associated MEK1(Y130C) mutation prevented this caspase-3-mediated proteolytic inactivation of MEK1 and efficiently protected cells from stress-induced apoptosis. Our data reveal the functional crosstalk between ERK-mediated cell survival and caspase-mediated cell death pathways and suggest that its dysregulation by a disease-associated MEK1 mutation is at least partly involved in the pathophysiology of congenital RASopathies.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular , Transducción de Señal , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Caspasa 3/metabolismo , Transducción de Señal/fisiología , Apoptosis/fisiología , Caspasas/metabolismo
3.
Sci Adv ; 6(26): eaay9778, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32637591

RESUMEN

Cells respond to oxidative stress by inducing intracellular signaling, including stress-activated p38 and JNK MAPK (SAPK) pathways, but the underlying mechanisms remain unclear. Here, we report that the MAP three kinase 1 (MTK1) SAPK kinase kinase (SAPKKK) functions as an oxidative-stress sensor that perceives the cellular redox state and transduces it into SAPK signaling. Following oxidative stress, MTK1 is rapidly oxidized and gradually reduced at evolutionarily conserved cysteine residues. These coupled oxidation-reduction modifications of MTK1 elicit its catalytic activity. Gene knockout experiments showed that oxidative stress-induced SAPK signaling is mediated by coordinated activation of the two SAPKKKs, MTK1 and apoptosis signal-regulating kinase 1 (ASK1), which have different time and dose-response characteristics. The MTK1-mediated redox sensing system is crucial for delayed and sustained SAPK activity and dictates cell fate decisions including cell death and interleukin-6 production. Our results delineate a molecular mechanism by which cells generate optimal biological responses under fluctuating redox environments.

4.
Commun Biol ; 2: 227, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31240265

RESUMEN

Proper regulation of epigenetic states of chromatin is crucial to achieve tissue-specific gene expression during embryogenesis. The lung-specific gene products, surfactant proteins B (SP-B) and C (SP-C), are synthesized in alveolar epithelial cells and prevent alveolar collapse. Epigenetic regulation of these surfactant proteins, however, remains unknown. Here we report that MCRIP1, a regulator of the CtBP transcriptional co-repressor, promotes the expression of SP-B and SP-C by preventing CtBP-mediated epigenetic gene silencing. Homozygous deficiency of Mcrip1 in mice causes fatal respiratory distress due to abnormal transcriptional repression of these surfactant proteins. We found that MCRIP1 interferes with interactions of CtBP with the lung-enriched transcriptional repressors, Foxp1 and Foxp2, thereby preventing the recruitment of the CtBP co-repressor complex to the SP-B and SP-C promoters and maintaining them in an active chromatin state. Our findings reveal a molecular mechanism by which cells prevent inadvertent gene silencing to ensure tissue-specific gene expression during organogenesis.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Proteínas Co-Represoras/metabolismo , Proteínas de Unión al ADN/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Pulmón/metabolismo , Proteína B Asociada a Surfactante Pulmonar/metabolismo , Proteína C Asociada a Surfactante Pulmonar/metabolismo , Animales , Línea Celular Tumoral , Epitelio/crecimiento & desarrollo , Epitelio/metabolismo , Epitelio/patología , Factores de Transcripción Forkhead/metabolismo , Expresión Génica , Silenciador del Gen , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Pulmón/crecimiento & desarrollo , Pulmón/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Represoras/metabolismo , Insuficiencia Respiratoria/metabolismo , Insuficiencia Respiratoria/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA