Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Ocul Biol Dis Infor ; 2(3): 149-159, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20046852

RESUMEN

Bear bile has been included in Asian pharmacopeias for thousands of years in treatment of several diseases, ranging from sore throat to hemorrhoids. The hydrophilic bile acids tauroursodeoxycholic acid (TUDCA) and ursodeoxycholic acid (UDCA) are the major bile acids of bear bile. Both of these are available as synthetic formulations and are approved by the health administrations of several countries for treatment of cirrhosis and gallstones. This review briefly covers the use of bear bile in Traditional Chinese Medicine, bile acid physiology, approved use of UDCA and TUDCA in Western medicine, and recent research exploring their neuroprotective properties, including in models of ocular disease.

2.
Invest Ophthalmol Vis Sci ; 48(7): 2947-56, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17591859

RESUMEN

PURPOSE: In juvenile tree shrews, positioning a negative-power lens in front of an eye produces a hyperopic shift in refractive state and causes a compensatory increase in axial length over several days so that the eye is myopic when the lens is removed. During negative lens compensation, the scleral extracellular matrix is remodeled. A biomechanical property of the sclera, creep rate, increases; during recovery from induced myopia, the creep rate decreases below normal levels. Changes in glycosaminoglycan (GAG) levels, including those of hyaluronan, may participate in these changes in creep rate and, in turn, participate in controlling the axial length and refractive state. This study investigated the unsulfated and sulfated GAG composition of the sclera during compensation for a -5 diopter (D) lens and during recovery. METHODS: Capillary electrophoresis was used to assess the relative levels (ng/mg dry scleral weight) of unsulfated GAGs (hyaluronan [HA] and chondroitin [C0S]), sulfated GAGs (chondroitin-4-sulfate [C4S], chondroitin-6-sulfate [C6S], and dermatan sulfate [DS]) in the sclera of groups of tree shrews (n = 5 per group) that wore a monocular -5 D lens for 1, 2, 4, or 11 days or had 11 days of -5 D lens wear followed by 1, 2, or 4 days of recovery from lens wear. The fellow eye served as an untreated control. Groups of normal and plano lens-treated animals provided age-matched values. RESULTS: Expressed as a fraction of dry weight, levels of HA were lower after 1, 4, and 11 days of -5 D lens wear. Levels of C0S, C6S, and C4S were significantly lower after 4 and 11 days of lens wear. After 1 and 2 days of recovery, GAG levels in the treated eyes were not significantly different from those in control eyes. After 4 recovery days, HA levels were lower, but the levels of all other GAGs were not different in the recovering and control eyes. Some binocular changes also occurred. CONCLUSIONS: The rapid differential decrease in HA levels during negative lens compensation and the absence of any difference after just 1 day of recovery suggest that HA levels may play a previously unrecognized early role in regulating the biomechanical property (creep rate) of the sclera. The reduced levels of the other GAGs, which occur when creep rate is at its peak elevation, and their rapid return to normal after 1 day of recovery suggest that they may also participate in regulating this biomechanical property of the sclera.


Asunto(s)
Sulfatos de Condroitina/metabolismo , Dermatán Sulfato/metabolismo , Modelos Animales de Enfermedad , Ácido Hialurónico/metabolismo , Miopía/metabolismo , Esclerótica/metabolismo , Animales , Condroitín/metabolismo , Electroforesis Capilar , Femenino , Masculino , Miopía/fisiopatología , Tamaño de los Órganos , Esclerótica/ultraestructura , Privación Sensorial , Tupaiidae
3.
Mol Vis ; 12: 1706-14, 2006 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-17213800

RESUMEN

PURPOSE: Bear bile has been used in Asia for over 3,000 years to treat visual disorders, yet its therapeutic potential remains unexplored in Western vision research. The purpose of this study was to test whether treatment of mice undergoing retinal degeneration with tauroursodeoxycholic acid (TUDCA), a primary constituent of bear bile, alters the course of degeneration. METHODS: Two retinal degeneration models were tested: the rd10 mouse, which has a point mutation in the gene encoding the beta subunit of rod phosphodiesterase, and light induced retinal damage (LIRD). For LIRD studies, albino Balb/C adult mice were subcutaneously injected with TUDCA (500 mg/kg body weight) or vehicle (0.15 M NaHCO(3)). Sixteen h later, each mouse received repeat injections. Half of each treatment group was then placed in bright light (10,000 lux) or dim light (200 lux) for seven h. At the end of exposure, animals were transferred to their regular housing. Electroretinograms (ERGs) were assessed 24 h later, mice sacrificed, eyes embedded in paraffin and sectioned, and retina sections assayed for morphology and apoptosis by TUNEL and anti-active caspase-3 immunoreactivity via fluorescent confocal microscopy. A subset of mice were sacrificed 8 and 15 days after exposure and retina sections analyzed for morphology and apoptosis. For rd10 studies, mice were injected subcutaneously with TUDCA or vehicle at postnatal (P) days 6, 9, 12, and 15. At p18, ERGs were recorded, mice were euthanized and eyes were harvested, fixed, and processed. Retinal sections were stained (toluidine blue), and retinal cell layers morphometrically analyzed by light microscopy. Consecutive sections were analyzed for apopotosis as above. RESULTS: By every measure, TUDCA greatly slowed retinal degeneration in LIRD and rd10 mice. ERG a-wave and b-wave amplitudes were greater in mice treated with TUDCA compared to those treated with vehicle. Retinas of TUDCA-treated mice had thicker outer nuclear layers, more photoreceptor cells, and more fully-developed photoreceptor outer segments. Finally, TUDCA treatments dramatically suppressed signs of apoptosis in both models. CONCLUSIONS: Systemic injection of TUDCA, a primary constituent of bear bile, profoundly suppressed apoptosis and preserved function and morphology of photoreceptor cells in two disparate mouse models of retinal degeneration. It may be that bear bile has endured so long in Asian pharmacopeias due to efficacy resulting from this anti-apoptotic and neuroprotective activity of TUDCA. These results also indicate that a systematic, clinical assessment of TUDCA may be warranted.


Asunto(s)
Bilis/química , Ceguera/prevención & control , Células Fotorreceptoras de Vertebrados/patología , Degeneración Retiniana/complicaciones , Ácido Tauroquenodesoxicólico/farmacología , Ursidae , Animales , Apoptosis/efectos de los fármacos , Ceguera/etiología , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 6 , Modelos Animales de Enfermedad , Electrorretinografía , Inyecciones Subcutáneas , Luz , Medicina Tradicional de Asia Oriental , Ratones , Ratones Mutantes , Hidrolasas Diéster Fosfóricas/genética , Células Fotorreceptoras de Vertebrados/efectos de los fármacos , Degeneración Retiniana/etiología , Degeneración Retiniana/genética , Degeneración Retiniana/fisiopatología , Ácido Tauroquenodesoxicólico/administración & dosificación , Ácido Tauroquenodesoxicólico/síntesis química
4.
J Biol Chem ; 280(18): 17823-30, 2005 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-15718246

RESUMEN

We examined molecular and electrophysiological properties of the electroneutral sodium/bicarbonate cotransporter (NBCn1) that is present in rat hippocampal neurons. By PCR, a deletion variant (NBCn1-E) that lacks 123 amino acids in the cytoplasmic N-terminal domain was found in adult neurons. The previously characterized NBCn1-B, which does not have the deletion, was detected in embryonic neurons. In Xenopus oocytes, NBCn1-E raised the intracellular pH in the presence of HCO(3) without significantly affecting the membrane potential. Despite this electroneutral cotransport activity, the transporter mediated a steady-state current that positively shifted the resting potential by almost 30 mV. The mean reversal potential of the steady-state current was -21.2 mV, close to the resting potential of -21.4 mV. The reversal potential shifted 26 mV in response to a 10-fold increase of external Na(+) for concentrations above 10 mm. The current activity mediated by the transporter was unaffected by K(+), Mg(2+), Ca(2+), or Cl(-). Stable expression of NBCn1-E in human embryonic kidney cells also evoked an inward current that shifted the resting potentials more positive compared with the sham-transfected controls. In primary cultures of embryonic hippocampal neurons, the NBCn1 protein was localized in somatodendrites and synapses. NBCn1 protein was partially colocalized with the postsynaptic density protein PSD-95. Single-cell PCR showed that NBCn1 mRNA expression was present in both gamma-aminobutyric acid (GABA)ergic and non-GABAergic neurons. We propose that NBCn1 in hippocampal neurons may affect neuronal activity by regulating local pH as well as steady-state inward currents at synapses.


Asunto(s)
Hipocampo/metabolismo , Neuronas/metabolismo , Simportadores de Sodio-Bicarbonato/química , Simportadores de Sodio-Bicarbonato/metabolismo , Simportadores de Sodio-Bicarbonato/fisiología , Animales , Línea Celular , Femenino , Humanos , Concentración de Iones de Hidrógeno , Ratas , Ratas Sprague-Dawley , Sinapsis/metabolismo , Xenopus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...