Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Circulation ; 126(18): 2208-19, 2012 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-23019294

RESUMEN

BACKGROUND: Heart failure is a growing cause of morbidity and mortality. Cardiac phosphatidylinositol 3-kinase signaling promotes cardiomyocyte survival and function, but it is paradoxically activated in heart failure, suggesting that chronic activation of this pathway may become maladaptive. Here, we investigated the downstream phosphatidylinositol 3-kinase effector, serum- and glucocorticoid-regulated kinase-1 (SGK1), in heart failure and its complications. METHODS AND RESULTS: We found that cardiac SGK1 is activated in human and murine heart failure. We investigated the role of SGK1 in the heart by using cardiac-specific expression of constitutively active or dominant-negative SGK1. Cardiac-specific activation of SGK1 in mice increased mortality, cardiac dysfunction, and ventricular arrhythmias. The proarrhythmic effects of SGK1 were linked to biochemical and functional changes in the cardiac sodium channel and could be reversed by treatment with ranolazine, a blocker of the late sodium current. Conversely, cardiac-specific inhibition of SGK1 protected mice after hemodynamic stress from fibrosis, heart failure, and sodium channel alterations. CONCLUSIONS: SGK1 appears both necessary and sufficient for key features of adverse ventricular remodeling and may provide a novel therapeutic target in cardiac disease.


Asunto(s)
Cardiomiopatía Dilatada/enzimología , Insuficiencia Cardíaca/enzimología , Proteínas Inmediatas-Precoces/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Remodelación Ventricular/fisiología , Acetanilidas/uso terapéutico , Animales , Cardiomegalia Inducida por el Ejercicio , Secuencia de Consenso , Modelos Animales de Enfermedad , Electrocardiografía , Inducción Enzimática , Humanos , Hipertensión/complicaciones , Proteínas Inmediatas-Precoces/química , Proteínas Inmediatas-Precoces/deficiencia , Proteínas Inmediatas-Precoces/genética , Proteínas Inmediatas-Precoces/metabolismo , Activación del Canal Iónico/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Canal de Sodio Activado por Voltaje NAV1.5/química , Canal de Sodio Activado por Voltaje NAV1.5/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.5/fisiología , Fosfatidilinositol 3-Quinasas/fisiología , Fosforilación , Piperazinas/uso terapéutico , Mapeo de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Ranolazina , Bloqueadores de los Canales de Sodio/farmacología , Bloqueadores de los Canales de Sodio/uso terapéutico , Taquicardia Ventricular/enzimología , Taquicardia Ventricular/etiología
2.
Am J Physiol Cell Physiol ; 297(5): C1124-32, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19759331

RESUMEN

Myostatin is a highly conserved negative regulator of skeletal muscle growth. Loss of functional myostatin in cattle, mice, sheep, dogs, and humans results in increased muscle mass. The molecular mechanisms responsible for this increase in muscle growth are not fully understood. Previously, we have reported that phenylephrine-induced cardiac muscle growth and Akt activation are enhanced in myostatin knockout mice compared with controls. Here we report that skeletal muscle from myostatin knockout mice show increased Akt protein expression and overall activity at baseline secondary to an increase in Akt mRNA. We examined the functional role of myostatin modulation of Akt in C2C12 myotubes, a well-established in vitro model of skeletal muscle hypertrophy. Adenoviral overexpression of myostatin attenuated the insulin-like growth factor-I (IGF-I)-mediated increase in myotube diameter, as well as IGF-I-stimulated Akt phosphorylation. Inhibition of myostatin by overexpression of the NH(2)-terminal portion of myostatin was sufficient to increase myotube diameter and Akt phosphorylation. Coexpression of myostatin and constitutively active Akt (myr-Akt) restored the increase in myotube diameter. Conversely, expression of dominant negative Akt (dn-Akt) with the inhibitory myostatin propeptide blocked the increase in myotube diameter. Of note, ribosomal protein S6 phosphorylation and atrogin-1/muscle atrophy F box mRNA were increased in skeletal muscle from myostain knockout mice. Together, these data suggest myostatin regulates muscle growth at least in part through regulation of Akt.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Miostatina/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Western Blotting , Línea Celular , Hipertrofia , Ratones , Ratones Noqueados , Miostatina/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
3.
Aging Cell ; 8(5): 573-83, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19663901

RESUMEN

Inhibitors of myostatin, a negative regulator of skeletal muscle mass, are being developed to mitigate aging-related muscle loss. Knock-out (KO) mouse studies suggest myostatin also affects adiposity, glucose handling and cardiac growth. However, the cardiac consequences of inhibiting myostatin remain unclear. Myostatin inhibition can potentiate cardiac growth in specific settings (Morissette et al., 2006), a concern because of cardiac hypertrophy is associated with adverse clinical outcomes. Therefore, we examined the systemic and cardiac effects of myostatin deletion in aged mice (27-30 months old). Heart mass increased comparably in both wild-type (WT) and KO mice. Aged KO mice maintained twice as much quadriceps mass as aged WT; however, both groups lost the same percentage (36%) of adult muscle mass. Dual-energy X-ray absorptiometry revealed increased bone density, mineral content, and area in aged KO vs. aged WT mice. Serum insulin and glucose levels were lower in KO mice. Echocardiography showed preserved cardiac function with better fractional shortening (58.1% vs. 49.4%, P = 0.002) and smaller left ventricular diastolic diameters (3.41 vs. 2.71, P = 0.012) in KO vs. WT mice. Phospholamban phosphorylation was increased 3.3-fold in KO hearts (P < 0.05), without changes in total phospholamban, sarco(endo)plasmic reticulum calcium ATPase 2a or calsequestrin. Aged KO hearts showed less fibrosis by Masson's Trichrome staining. Thus, myostatin deletion does not affect aging-related increases in cardiac mass and appears beneficial for bone density, insulin sensitivity and heart function in senescent mice. These results suggest that clinical interventions designed to inhibit skeletal muscle mass loss with aging could have beneficial effects on other organ systems as well.


Asunto(s)
Envejecimiento/fisiología , Eliminación de Gen , Ratones/genética , Miostatina/deficiencia , Miostatina/genética , Absorciometría de Fotón , Adiponectina/sangre , Animales , Glucemia/metabolismo , Densidad Ósea , Desarrollo Óseo/fisiología , Huesos/diagnóstico por imagen , Electrocardiografía , Corazón/anatomía & histología , Corazón/crecimiento & desarrollo , Corazón/fisiología , Insulina/sangre , Factor I del Crecimiento Similar a la Insulina/metabolismo , Ratones/crecimiento & desarrollo , Ratones Noqueados , Miostatina/antagonistas & inhibidores , Tibia/anatomía & histología , Tibia/crecimiento & desarrollo
4.
Circ Res ; 99(1): 15-24, 2006 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-16763166

RESUMEN

Myostatin is a highly conserved, potent negative regulator of skeletal muscle hypertrophy in many species, from rodents to humans, although its mechanisms of action are incompletely understood. Transcript profiling of hearts from a genetic model of cardiac hypertrophy revealed dramatic upregulation of myostatin, not previously recognized to play a role in the heart. Here we show that myostatin abrogates the cardiomyocyte growth response to phenylephrine in vitro through inhibition of p38 and the serine-threonine kinase Akt, a critical determinant of cell size in many species from drosophila to mammals. Evaluation of male myostatin-null mice revealed that their cardiomyocytes and hearts overall were slightly smaller at baseline than littermate controls but exhibited more exuberant growth in response to chronic phenylephrine infusion. The increased cardiac growth in myostatin-null mice corresponded with increased p38 phosphorylation and Akt activation in vivo after phenylephrine treatment. Together, these data demonstrate that myostatin is dynamically regulated in the heart and acts more broadly than previously appreciated to regulate growth of multiple types of striated muscle.


Asunto(s)
División Celular/fisiología , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta/fisiología , Agonistas alfa-Adrenérgicos/farmacología , Animales , División Celular/efectos de los fármacos , Células Cultivadas , Masculino , Ratones , Ratones Noqueados , Miocardio/citología , Miocardio/metabolismo , Miostatina , Fenilefrina/farmacología , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Ratas , Ratas Sprague-Dawley , Factor de Crecimiento Transformador beta/deficiencia , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores
5.
Curr Opin Pharmacol ; 5(2): 165-70, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15780826

RESUMEN

Accumulating evidence suggests that apoptosis is not only a common feature of diverse forms of heart failure but also contributes to disease pathogenesis and progression. This contribution of apoptotic signaling to heart failure could reflect not only loss of cardiomyocytes but also dysfunction of surviving cells. The convergence of signaling mechanisms controlling both cardiomyocyte survival and function provides an opportunity for therapeutic strategies that target these pathways. However, significant hurdles must be overcome before the clinical application of these insights becomes possible.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Transducción de Señal/fisiología , Animales , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Fármacos Cardiovasculares/administración & dosificación , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Insuficiencia Cardíaca/tratamiento farmacológico , Humanos , Transducción de Señal/efectos de los fármacos
6.
J Mol Cell Cardiol ; 36(4): 481-93, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15081308

RESUMEN

The effect of the lysophospholipid, lysophosphatidic acid (LPA), on signaling and hypertrophy of neonatal rat ventricular cardiomyocytes was examined. Myocytes express mRNA for all three G-protein-coupled LPA receptor subtypes (LPA(1)/Edg-2, LPA(2)/Edg-4, and LPA(3)/Edg-7) as indicated by RT-PCR analysis. LPA inhibits isoproterenol-stimulated cyclic AMP accumulation with an IC(50) approximately 40 nM and promotes phosphorylation of ERK-1/2. LPA also elicits a small, slow onset, and activation of phosphoinositide hydrolysis with EC(50) approximately 400 nM, and stimulates a marked increase in the extent of Rho activation. Longer-term treatment with LPA induces a hypertrophic response in myocytes as indicated by increases in cell size, actin organization, ANF staining of the perinuclear region and activation of ANF promoter-luciferase gene expression. Pretreatment of myocytes with pertussis toxin (PTX) not only blocks the capacity of LPA to inhibit cyclic AMP formation and stimulate ERK phosphorylation, but also inhibits hypertrophic changes in cell morphology and ANF-luciferase gene expression. Neither phospholipase C nor Rho activation is PTX sensitive. The hypertrophic effects of LPA on myocytes are also inhibited by treatment with C3 exoenzyme or by transfection of plasmids expressing either C3 exoenzyme or dominant-negative Rho to block Rho function. Inhibition of ERK activation with PD98059 blocks LPA-induced hypertrophy while inhibitors of phospholipase C (U73122), PKC (GF109203X), or p38MAPK (SB203580) do not. These data suggest that LPA induces cardiomyocyte hypertrophy via a pathway different from the conventional G(q) pathway utilized by phenylephrine, endothelin, and PGF2 alpha and involving activation of a PTX-sensitive G(i)/ERK pathway in conjunction with activation of Rho-mediated signals.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Lisofosfolípidos/metabolismo , Lisofosfolípidos/farmacología , Miocitos Cardíacos/patología , Proteínas de Unión al GTP rho/metabolismo , Adenilil Ciclasas/metabolismo , Animales , Animales Recién Nacidos , Western Blotting , AMP Cíclico/metabolismo , Relación Dosis-Respuesta a Droga , Activación Enzimática , Inhibidores Enzimáticos/farmacología , Estrenos/farmacología , Flavonoides/farmacología , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Hidrólisis , Concentración 50 Inhibidora , Luciferasas/metabolismo , Lisofosfolípidos/química , Microscopía Fluorescente , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Modelos Biológicos , Toxina del Pertussis/farmacología , Fosfatidilinositoles/química , Biosíntesis de Proteínas , Proteína Quinasa C/antagonistas & inhibidores , Proteínas/química , Pirrolidinonas/farmacología , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo , Transfección , Fosfolipasas de Tipo C/farmacología
7.
J Mol Cell Cardiol ; 35(10): 1217-27, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-14519432

RESUMEN

During hypertrophy the heart increases its utilization of glucose and decreases that of fatty acids, resuming a fetal pattern of substrate metabolism. As demonstrated here, GLUT1 protein expression is increased in association with in vivo pressure-overload-induced hypertrophy. The relationship of changes in GLUT1 to enhanced glucose uptake and to cardiomyocyte hypertrophy and survival is not known. To explore this question we first examined the effect of prostaglandin F2alpha (PGF2alpha), an established hypertrophic agonist, on GLUT1 expression and glucose uptake in neonatal rat ventricular myocytes (NRVMs). PGF2alpha treatment for 24 h led to a fivefold increase in GLUT1 expression and a sixfold increase in glucose uptake. However, NRVMs cultured in the absence of glucose or with 3-O-methyl glucose, a competitive inhibitor of glucose uptake, still exhibited PGF2alpha-induced hypertrophic growth. In addition, we determined that overexpression of GLUT1 using adenovirus was insufficient to cause an increase in cell size, myofibrillar organization, or atrial natriuretic factor (ANF) expression. On the other hand, adenoviral overexpression of antisense GLUT1 (which blocked PGF2alpha-induced increases in GLUT1 protein) prevented PGF2alpha-stimulated cell enlargement and increases in ANF transcription. Overexpression of GLUT1 or addition of PGF2alpha also protected cells against serum deprivation-induced apoptosis; this effect was blocked by antisense GLUT1 but, surprisingly, was not dependent on glucose. Together, these data suggest that upregulation of GLUT1 serves a role in agonist-induced hypertrophy and survival which can be dissociated from its role in glucose transport.


Asunto(s)
Proteínas de Transporte de Monosacáridos/biosíntesis , Miocitos Cardíacos/citología , Regulación hacia Arriba , Adenoviridae/genética , Animales , Aorta/patología , Apoptosis , Factor Natriurético Atrial/biosíntesis , Transporte Biológico , Western Blotting , Supervivencia Celular , Células Cultivadas , Dinoprost/metabolismo , Ensayo de Inmunoadsorción Enzimática , Glucosa/metabolismo , Glucosa/farmacocinética , Transportador de Glucosa de Tipo 1 , Hipertrofia , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas de Transporte de Monosacáridos/metabolismo , Células Musculares/citología , Oligonucleótidos Antisentido/farmacología , Presión , Ratas , Ratas Sprague-Dawley , Fracciones Subcelulares , Factores de Tiempo
8.
J Biol Chem ; 277(2): 1261-7, 2002 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-11694533

RESUMEN

The delta isoform of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) predominates in the heart. To investigate the role of CaMKII in cardiac function, we made transgenic (TG) mice that express the nuclear delta(B) isoform of CaMKII. The expressed CaMKIIdelta(B) transgene was restricted to the myocardium and highly concentrated in the nucleus. Cardiac hypertrophy was evidenced by an increased left ventricle to body weight ratio and up-regulation of embryonic and contractile protein genes including atrial natriuretic factor, beta-myosin heavy chain, and alpha-skeletal actin. Echocardiography revealed ventricular dilation and decreased cardiac function, which was also observed in hemodynamic measurements from CaMKIIdelta(B) TG mice. Surprisingly, phosphorylation of phospholamban at both Thr(17) and Ser(16) was significantly decreased in the basal state as well as upon adrenergic stimulation. This was associated with diminished sarcoplasmic reticulum Ca(2+) uptake in vitro and altered relaxation properties in vivo. The activity and expression of protein phosphatase 2A were both found to be increased in CaMKII TG mice, and immunoprecipitation studies indicated that protein phosphatase 2A directly associates with CaMKII. Our findings are the first to demonstrate that CaMKII can induce hypertrophy and dilation in vivo and indicate that compensatory increases in phosphatase activity contribute to the resultant phenotype.


Asunto(s)
Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Cardiomegalia/fisiopatología , Cardiomiopatía Dilatada/fisiopatología , Miocardio/enzimología , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Agonistas Adrenérgicos beta/farmacología , Animales , Proteínas de Unión al Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Cardiomegalia/patología , Cardiomiopatía Dilatada/patología , Dobutamina/farmacología , Ecocardiografía , Corazón/efectos de los fármacos , Corazón/fisiología , Hemodinámica , Inmunohistoquímica , Isoenzimas/metabolismo , Ratones , Ratones Transgénicos , Miocardio/citología , Miocardio/metabolismo , Miocardio/patología , Proteína Fosfatasa 2 , Retículo Sarcoplasmático/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA