Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 22991, 2023 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-38151566

RESUMEN

The present study examined human N-myristoylated proteins that specifically localize to mitochondria among the 1,705 human genes listed in MitoProteome, a mitochondrial protein database. We herein employed a strategy utilizing cellular metabolic labeling with a bioorthogonal myristic acid analog in transfected COS-1 cells established in our previous studies. Four proteins, DMAC1, HCCS, NDUFB7, and PLGRKT, were identified as N-myristoylated proteins that specifically localize to mitochondria. Among these proteins, DMAC1 and NDUFB7 play critical roles in the assembly of complex I of the mitochondrial respiratory chain. DMAC1 functions as an assembly factor, and NDUFB7 is an accessory subunit of complex I. An analysis of the intracellular localization of non-myristoylatable G2A mutants revealed that protein N-myristoylation occurring on NDUFB7 was important for the mitochondrial localization of this protein. Furthermore, an analysis of the role of the CHCH domain in NDUFB7 using Cys to Ser mutants revealed that it was essential for the mitochondrial localization of NDUFB7. Therefore, the present results showed that NDUFB7, a vital component of human mitochondrial complex I, was N-myristoylated, and protein N-myrisotylation and the CHCH domain were both indispensable for the specific targeting and localization of NDUFB7 to mitochondria.


Asunto(s)
Mitocondrias , Membranas Mitocondriales , Animales , Chlorocebus aethiops , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Células COS , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Procesamiento Proteico-Postraduccional , Ácido Mirístico/metabolismo , NADH NADPH Oxidorreductasas/metabolismo
2.
Sci Rep ; 11(1): 19233, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34584137

RESUMEN

The membrane topology and intracellular localization of ANKRD22, a novel human N-myristoylated protein with a predicted single-pass transmembrane domain that was recently reported to be overexpressed in cancer, were examined. Immunofluorescence staining of COS-1 cells transfected with cDNA encoding ANKRD22 coupled with organelle markers revealed that ANKRD22 localized specifically to lipid droplets (LD). Analysis of the intracellular localization of ANKRD22 mutants C-terminally fused to glycosylatable tumor necrosis factor (GLCTNF) and assessment of their susceptibility to protein N-glycosylation revealed that ANKRD22 is synthesized on the endoplasmic reticulum (ER) membrane as an N-myristoylated hairpin-like monotopic membrane protein with the amino- and carboxyl termini facing the cytoplasm and then sorted to LD. Pro98 located at the center of the predicted membrane domain was found to be essential for the formation of the hairpin-like monotopic topology of ANKRD22. Moreover, the hairpin-like monotopic topology, and positively charged residues located near the C-terminus were demonstrated to be required for the sorting of ANKRD22 from ER to LD. Protein N-myristoylation was found to positively affect the LD localization. Thus, multiple factors, including hairpin-like monotopic membrane topology, C-terminal positively charged residues, and protein N-myristoylation cooperatively affected the intracellular targeting of ANKRD22 to LD.


Asunto(s)
Gotas Lipídicas/metabolismo , Proteínas de la Membrana/metabolismo , Ácido Mirístico/metabolismo , Animales , Células COS , Sistema Libre de Células , Chlorocebus aethiops , Humanos , Insectos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Mutación , Procesamiento Proteico-Postraduccional
3.
PLoS One ; 14(11): e0225510, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31751425

RESUMEN

To establish a strategy for identifying protein-N-myristoylation-dependent phosphorylation of cellular proteins, Phos-tag SDS-PAGE was performed on wild-type (WT) and nonmyristoylated mutant (G2A-mutant) FMNL2 and FMNL3, phosphorylated N-myristoylated model proteins expressed in HEK293 cells. The difference in the banding pattern in Phos-tag SDS-PAGE between the WT and G2A-mutant FMNL2 indicated the presence of N-myristoylation-dependent phosphorylation sites in FMNL2. Phos-tag SDS-PAGE of FMNL2 mutants in which the putative phosphorylation sites listed in PhosphoSitePlus (an online database of phosphorylation sites) were changed to Ala revealed that Ser-171 and Ser-1072 are N-myristoylation-dependent phosphorylation sites in FMNL2. Similar experiments with FMNL3 demonstrated that N-myristoylation-dependent phosphorylation occurs at a single Ser residue at position 174, which is a Ser residue conserved between FMNL2 and FMNL3, corresponding to Ser-171 in FMNL2. The facts that phosphorylation of Ser-1072 in FMNL2 has been shown to play a critical role in integrin ß1 internalization mediated by FMNL2 and that Ser-171 in FMNL2 and Ser-174 in FMNL3 are novel putative phosphorylation sites conserved between FMNL2 and FMNL3 indicate that the strategy used in this study is a useful tool for identifying and characterizing physiologically important phosphorylation reactions occurring on N-myristoylated proteins.


Asunto(s)
Forminas/metabolismo , Piridinas/química , Serina/química , Animales , Células COS , Chlorocebus aethiops , Electroforesis en Gel de Poliacrilamida , Forminas/química , Forminas/genética , Células HEK293 , Humanos , Mutación , Fosforilación
4.
PLoS One ; 13(11): e0206355, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30427857

RESUMEN

Previously, we showed that SAMM50, a mitochondrial outer membrane protein, is N-myristoylated, and this lipid modification is required for the proper targeting of SAMM50 to mitochondria. In this study, we characterized protein N-myristoylation occurring on four human mitochondrial proteins, SAMM50, TOMM40, MIC19, and MIC25, three of which are components of the mitochondrial intermembrane space bridging (MIB) complex, which plays a critical role in the structure and function of mitochondria. In vitro and in vivo metabolic labeling experiments revealed that all four of these proteins were N-myristoylated. Analysis of intracellular localization of wild-type and non-myristoylated G2A mutants of these proteins by immunofluorescence microscopic analysis and subcellular fractionation analysis indicated that protein N-myristoylation plays a critical role in mitochondrial targeting and membrane binding of two MIB components, SAMM50 and MIC19, but not those of TOMM40 and MIC25. Immunoprecipitation experiments using specific antibodies revealed that MIC19, but not MIC25, was a major N-myristoylated binding partner of SAMM50. Immunoprecipitation experiments using a stable transformant of MIC19 confirmed that protein N-myristoylation of MIC19 is required for the interaction between MIC19 and SAMM50, as reported previously. Thus, protein N-myristoylation occurring on two mitochondrial MIB components, SAMM50 and MIC19, plays a critical role in the mitochondrial targeting and protein-protein interaction between these two MIB components.


Asunto(s)
Proteínas Mitocondriales/metabolismo , Ácido Mirístico/metabolismo , Procesamiento Proteico-Postraduccional , Secuencia de Aminoácidos , Animales , Regulación de la Expresión Génica , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/química
5.
New Phytol ; 218(4): 1504-1521, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29498046

RESUMEN

N-myristoylation and S-acylation promote protein membrane association, allowing regulation of membrane proteins. However, how widespread this targeting mechanism is in plant signaling processes remains unknown. Through bioinformatics analyses, we determined that among plant protein kinase families, the occurrence of motifs indicative for dual lipidation by N-myristoylation and S-acylation is restricted to only five kinase families, including the Ca2+ -regulated CDPK-SnRK and CBL protein families. We demonstrated N-myristoylation of CDPK-SnRKs and CBLs by incorporation of radiolabeled myristic acid. We focused on CPK6 and CBL5 as model cases and examined the impact of dual lipidation on their function by fluorescence microscopy, electrophysiology and functional complementation of Arabidopsis mutants. We found that both lipid modifications were required for proper targeting of CBL5 and CPK6 to the plasma membrane. Moreover, we identified CBL5-CIPK11 complexes as phosphorylating and activating the guard cell anion channel SLAC1. SLAC1 activation by CPK6 or CBL5-CIPK11 was strictly dependent on dual lipid modification, and loss of CPK6 lipid modification prevented functional complementation of cpk3 cpk6 guard cell mutant phenotypes. Our findings establish the general importance of dual lipid modification for Ca2+ signaling processes, and demonstrate their requirement for guard cell anion channel regulation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Proteínas de Unión al Calcio/metabolismo , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Calcio/metabolismo , Canales Iónicos/metabolismo , Proteínas de la Membrana/metabolismo , Ácido Mirístico/metabolismo , Procesamiento Proteico-Postraduccional , Ácido Abscísico/farmacología , Acilación , Secuencias de Aminoácidos , Animales , Aniones , Arabidopsis/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Lípidos/química , Modelos Biológicos , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/enzimología , Estomas de Plantas/citología , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/fisiología , Unión Proteica/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Nicotiana/enzimología , Xenopus
6.
Anal Biochem ; 511: 1-9, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27480498

RESUMEN

To establish a strategy to identify dually fatty acylated proteins from cDNA resources, seven N-myristoylated proteins with cysteine (Cys) residues within the 10 N-terminal residues were selected as potential candidates among 27 N-myristoylated proteins identified from a model human cDNA resource. Seven proteins C-terminally tagged with FLAG tag or EGFP were generated and their susceptibility to protein N-myristoylation and S-palmitoylation were evaluated by metabolic labeling with [(3)H]myristic acid or [(3)H]palmitic acid either in an insect cell-free protein synthesis system or in transfected mammalian cells. As a result, EEPD1, one of five proteins (RFTN1, EEPD1, GNAI1, PDE2A, RNF11) found to be dually acylated, was shown to be a novel dually fatty acylated protein. Metabolic labeling experiments using G2A and C7S mutants of EEPD1-EGFP revealed that the palmitoylation site of EEPD1 is Cys at position 7. Analysis of the intracellular localization of EEPD1 C-terminally tagged with FLAG tag or EGFP and its G2A and C7S mutants revealed that the dual acylation directs EEPD1 to localize to the plasma membrane. Thus, dually fatty acylated proteins can be identified from cDNA resources by cell-free and cellular metabolic labeling of N-myristoylated proteins with Cys residue(s) close to the N-myristoylated N-terminus.


Asunto(s)
Proteínas Portadoras/biosíntesis , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 2/biosíntesis , ADN Complementario/metabolismo , Endodesoxirribonucleasas/biosíntesis , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/biosíntesis , Lipoilación , Ácido Palmítico/metabolismo , Acilación , Animales , Células COS , Proteínas Portadoras/química , Sistema Libre de Células , Chlorocebus aethiops , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 2/química , ADN Complementario/química , Proteínas de Unión al ADN , Endodesoxirribonucleasas/química , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/química , Humanos
7.
PLoS One ; 10(8): e0136360, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26308446

RESUMEN

To identify physiologically important human N-myristoylated proteins, 90 cDNA clones predicted to encode human N-myristoylated proteins were selected from a human cDNA resource (4,369 Kazusa ORFeome project human cDNA clones) by two bioinformatic N-myristoylation prediction systems, NMT-The MYR Predictor and Myristoylator. After database searches to exclude known human N-myristoylated proteins, 37 cDNA clones were selected as potential human N-myristoylated proteins. The susceptibility of these cDNA clones to protein N-myristoylation was first evaluated using fusion proteins in which the N-terminal ten amino acid residues were fused to an epitope-tagged model protein. Then, protein N-myristoylation of the gene products of full-length cDNAs was evaluated by metabolic labeling experiments both in an insect cell-free protein synthesis system and in transfected human cells. As a result, the products of 13 cDNA clones (FBXL7, PPM1B, SAMM50, PLEKHN, AIFM3, C22orf42, STK32A, FAM131C, DRICH1, MCC1, HID1, P2RX5, STK32B) were found to be human N-myristoylated proteins. Analysis of the role of protein N-myristoylation on the intracellular localization of SAMM50, a mitochondrial outer membrane protein, revealed that protein N-myristoylation was required for proper targeting of SAMM50 to mitochondria. Thus, the strategy used in this study is useful for the identification of physiologically important human N-myristoylated proteins from human cDNA resources.


Asunto(s)
ADN Complementario/genética , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Ácido Mirístico/química , Procesamiento Proteico-Postraduccional , Secuencia de Aminoácidos , Animales , Células COS , Sistema Libre de Células , Chlorocebus aethiops , Células HEK293 , Humanos , Microscopía Fluorescente , Datos de Secuencia Molecular , Biosíntesis de Proteínas , Homología de Secuencia de Aminoácido , Transfección
8.
Hum Mol Genet ; 24(7): 2000-10, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25504045

RESUMEN

We report siblings of consanguineous parents with an infantile-onset neurodegenerative disorder manifesting a predominant sensorimotor axonal neuropathy, optic atrophy and cognitive deficit. We used homozygosity mapping to identify an ∼12-Mbp interval identical by descent (IBD) between the affected individuals on chromosome 3q13.13-21.1 with an LOD score of 2.31. We combined family-based whole-exome and whole-genome sequencing of parents and affected siblings and, after filtering of likely non-pathogenic variants, identified a unique missense variant in syntaxin-binding protein 5-like (STXBP5L c.3127G>A, p.Val1043Ile [CCDS43137.1]) in the IBD interval. Considering other modes of inheritance, we also found compound heterozygous variants in FMNL3 (c.114G>C, p.Phe38Leu and c.1372T>G, p.Ile458Leu [CCDS44874.1]) located on chromosome 12. STXBP5L (or Tomosyn-2) is expressed in the central and peripheral nervous system and is known to inhibit neurotransmitter release through inhibition of the formation of the SNARE complexes between synaptic vesicles and the plasma membrane. FMNL3 is expressed more widely and is a formin family protein that is involved in the regulation of cell morphology and cytoskeletal organization. The STXBP5L p.Val1043Ile variant enhanced inhibition of exocytosis in comparison with wild-type (WT) STXBP5L. Furthermore, WT STXBP5L, but not variant STXBP5L, promoted axonal outgrowth in manipulated mouse primary hippocampal neurons. However, the FMNL3 p.Phe38Leu and p.Ile458Leu variants showed minimal effects in these cells. Collectively, our clinical, genetic and molecular data suggest that the IBD variant in STXBP5L is the likely cause of the disorder.


Asunto(s)
Proteínas Portadoras/genética , Homocigoto , Enfermedades del Recién Nacido/genética , Mutación , Enfermedades Neurodegenerativas/genética , Proteínas Adaptadoras del Transporte Vesicular , Femenino , Humanos , Lactante , Recién Nacido , Masculino
9.
Anal Biochem ; 464: 83-93, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25043870

RESUMEN

To establish a non-radioactive, cell-free detection system for protein N-myristoylation, metabolic labeling in a cell-free protein synthesis system using bioorthogonal myristic acid analogues was performed. After Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) with a biotin tag, the tagged proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and blotted on a polyvinylidene fluoride (PVDF) membrane, and then protein N-myristoylation was detected by enhanced chemiluminescence (ECL) using horseradish peroxidase (HRP)-conjugated streptavidin. The results showed that metabolic labeling in an insect cell-free protein synthesis system using an azide analogue of myristic acid followed by CuAAC with alkynyl biotin was the most effective strategy for cell-free detection of protein N-myristoylation. To determine whether the newly developed detection method can be applied for the detection of novel N-myristoylated proteins from complementary DNA (cDNA) resources, four candidate cDNA clones were selected from a human cDNA resource and their susceptibility to protein N-myristoylation was evaluated using the newly developed strategy. As a result, the products of three cDNA clones were found to be novel N-myristoylated protein, and myristoylation-dependent specific intracellular localization was observed for two novel N-myristoylated proteins. Thus, the metabolic labeling in an insect cell-free protein synthesis system using bioorthogonal azide analogue of myristic acid was an effective strategy to identify novel N-myristoylated proteins from cDNA resources.


Asunto(s)
ADN/química , Ácido Mirístico/química , Proteínas/análisis , Electroforesis en Gel de Poliacrilamida , Células HEK293 , Humanos , Membranas Artificiales , Polivinilos/química , Proteínas/química
10.
PLoS One ; 8(11): e78235, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24223779

RESUMEN

N-myristoylation of eukaryotic cellular proteins has been recognized as a modification that occurs mainly on cytoplasmic proteins. In this study, we examined the membrane localization, membrane integration, and intracellular localization of four recently identified human N-myristoylated proteins with predicted transmembrane domains. As a result, it was found that protein Lunapark, the human ortholog of yeast protein Lnp1p that has recently been found to be involved in network formation of the endoplasmic reticulum (ER), is an N-myristoylated polytopic integral membrane protein. Analysis of tumor necrosis factor-fusion proteins with each of the two putative transmembrane domains and their flanking regions of protein Lunapark revealed that transmembrane domain 1 and 2 functioned as type II signal anchor sequence and stop transfer sequence, respectively, and together generated a double-spanning integral membrane protein with an N-/C-terminal cytoplasmic orientation. Immunofluorescence staining of HEK293T cells transfected with a cDNA encoding protein Lunapark tagged with FLAG-tag at its C-terminus revealed that overexpressed protein Lunapark localized mainly to the peripheral ER and induced the formation of large polygonal tubular structures. Morphological changes in the ER induced by overexpressed protein Lunapark were significantly inhibited by the inhibition of protein N-myristoylation by means of replacing Gly2 with Ala. These results indicated that protein N-myristoylation plays a critical role in the ER morphological change induced by overexpression of protein Lunapark.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas de Homeodominio/metabolismo , Ácido Mirístico/metabolismo , Procesamiento Proteico-Postraduccional , Secuencia de Aminoácidos , Animales , ADN Complementario/genética , ADN Complementario/metabolismo , Retículo Endoplásmico/genética , Regulación de la Expresión Génica , Vectores Genéticos , Células HEK293 , Proteínas de Homeodominio/genética , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Transducción de Señal , Transfección , Dedos de Zinc/genética
11.
PLoS One ; 7(11): e50082, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23189181

RESUMEN

Accumulation of protoporphyrin IX (PpIX) in malignant cells is the basis of 5-aminolevulinic acid (ALA)-mediated photodynamic therapy. We studied the expression of proteins that possibly affect ALA-mediated PpIX accumulation, namely oligopeptide transporter-1 and -2, ferrochelatase and ATP-binding cassette transporter G2 (ABCG2), in several tumor cell lines. Among these proteins, only ABCG2 correlated negatively with ALA-mediated PpIX accumulation. Both a subcellular fractionation study and confocal laser microscopic analysis revealed that ABCG2 was distributed not only in the plasma membrane but also intracellular organelles, including mitochondria. In addition, mitochondrial ABCG2 regulated the content of ALA-mediated PpIX in mitochondria, and Ko143, a specific inhibitor of ABCG2, enhanced mitochondrial PpIX accumulation. To clarify the possible roles of mitochondrial ABCG2, we characterized stably transfected-HEK (ST-HEK) cells overexpressing ABCG2. In these ST-HEK cells, functionally active ABCG2 was detected in mitochondria, and treatment with Ko143 increased ALA-mediated mitochondrial PpIX accumulation. Moreover, the mitochondria isolated from ST-HEK cells exported doxorubicin probably through ABCG2, because the export of doxorubicin was inhibited by Ko143. The susceptibility of ABCG2 distributed in mitochondria to proteinase K, endoglycosidase H and peptide-N-glycosidase F suggested that ABCG2 in mitochondrial fraction is modified by N-glycans and trafficked through the endoplasmic reticulum and Golgi apparatus and finally localizes within the mitochondria. Thus, it was found that ABCG2 distributed in mitochondria is a functional transporter and that the mitochondrial ABCG2 regulates ALA-mediated PpIX level through PpIX export from mitochondria to the cytosol.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Ácido Aminolevulínico/metabolismo , Mitocondrias/metabolismo , Proteínas de Neoplasias/metabolismo , Protoporfirinas/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Transportadoras de Casetes de Unión a ATP/genética , Adenosina/análogos & derivados , Adenosina/farmacología , Ácido Aminolevulínico/farmacología , Ácido Aminolevulínico/toxicidad , Transporte Biológico , Línea Celular Tumoral , Dicetopiperazinas , Doxorrubicina/metabolismo , Retículo Endoplásmico/metabolismo , Ferroquelatasa/metabolismo , Expresión Génica , Glicosilación , Aparato de Golgi/metabolismo , Células HEK293 , Compuestos Heterocíclicos de 4 o más Anillos , Humanos , Proteínas de Neoplasias/genética , Transportador de Péptidos 1 , Transporte de Proteínas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Simportadores/metabolismo , Células U937
12.
Biosci Biotechnol Biochem ; 76(6): 1201-9, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22790947

RESUMEN

The subcellular localization of 13 recently identified N-myristoylated proteins and the effects of overexpression of these proteins on cellular morphology were examined with the aim of understanding the physiological roles of the protein N-myristoylation that occurs on these proteins. Immunofluorescence staining of HEK293T cells transfected with cDNAs coding for the proteins revealed that most of them were associated with the plasma membrane or the membranes of intracellular compartments, and did not affect cellular morphology. However, two proteins, formin-like2 (FMNL2) and formin-like3 (FMNL3), both of them are members of the formin family of proteins, were associated mainly with the plasma membrane and induced significant cellular morphological changes. Inhibition of protein N-myristoylation by replacement of Gly2 with Ala or by the use of N-myristoylation inhibitor significantly inhibited membrane localization and the induction of cellular morphological changes, indicating that protein N-myristoylation plays critical roles in the cellular morphological changes induced by FMNL2 and FMNL3.


Asunto(s)
Membrana Celular/metabolismo , Ácido Mirístico/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas/metabolismo , Alanina/genética , Alanina/metabolismo , Membrana Celular/genética , Técnica del Anticuerpo Fluorescente , Forminas , Expresión Génica , Glicina/genética , Glicina/metabolismo , Células HEK293 , Humanos , Plásmidos , Proteínas/genética , Transfección
13.
Proteomics ; 10(9): 1780-93, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20213681

RESUMEN

To establish a strategy for the comprehensive identification of human N-myristoylated proteins, the susceptibility of human cDNA clones to protein N-myristoylation was evaluated by metabolic labeling and MS analyses of proteins expressed in an insect cell-free protein synthesis system. One-hundred-and-forty-one cDNA clones with N-terminal Met-Gly motifs were selected as potential candidates from approximately 2000 Kazusa ORFeome project human cDNA clones, and their susceptibility to protein N-myristoylation was evaluated using fusion proteins, in which the N-terminal ten amino acid residues were fused to an epitope-tagged model protein. As a result, the products of 29 out of 141 cDNA clones were found to be effectively N-myristoylated. The metabolic labeling experiments both in an insect cell-free protein synthesis system and in the transfected COS-1 cells using full-length cDNA revealed that 27 out of 29 proteins were in fact N-myristoylated. Database searches with these 27 cDNA clones revealed that 18 out of 27 proteins are novel N-myristoylated proteins that have not been reported previously to be N-myristoylated, indicating that this strategy is useful for the comprehensive identification of human N-myristoylated proteins from human cDNA resources.


Asunto(s)
Ácido Mirístico/análisis , Biosíntesis de Proteínas , Proteínas/análisis , Acilación , Secuencia de Aminoácidos , Animales , Línea Celular , Sistema Libre de Células/química , Chlorocebus aethiops , ADN Complementario/genética , Humanos , Datos de Secuencia Molecular , Peso Molecular , Ácido Mirístico/química , Ácido Mirístico/metabolismo , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , Spodoptera
14.
Arch Insect Biochem Physiol ; 69(1): 22-31, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18454491

RESUMEN

To gain insight into the mechanism of action and selectivity of the insecticidal activity of pyridalyl, the cytotoxicity of pyridalyl against various insect and mammalian cell lines was characterized by measuring the inhibition of cellular protein synthesis. When the effect of pyridalyl on the cellular protein synthesis in Sf9 cells was evaluated by measuring the incorporation of [(3)H]leucine, rapid and significant inhibition of protein synthesis was observed. However, pyridalyl did not inhibit protein synthesis in a cell-free protein synthesis system, indicating that pyridalyl does not directly inhibit protein synthesis. No obvious cytotoxicity was observed against any of the mammalian cell lines tested. In the case of insect cell lines, remarkable differences in the cytotoxicity of pyridalyl were observed: the highest cytotoxicity (IC50 mM) was found against Sf9 cells derived from Spodoptera frugiperda, whereas no obvious cytotoxicity was observed against BmN4 cells derived from Bombyx mori. Measurements of the insecticidal activity of pyridalyl against Spodoptera litura and B. mori revealed a correlation between the cytotoxicity against cultured cell lines and the insecticidal activity. From these observations, it was concluded that the selective inhibition of cellular protein synthesis by pyridalyl might contribute significantly to the insecticidal activity and the selectivity of this compound.


Asunto(s)
Insecticidas/farmacología , Éteres Fenílicos/farmacología , Inhibidores de la Síntesis de la Proteína/farmacología , Animales , Bombyx/citología , Bombyx/efectos de los fármacos , Bombyx/metabolismo , Línea Celular , Proliferación Celular/efectos de los fármacos , Humanos , Éteres Fenílicos/química , Spodoptera/citología , Spodoptera/efectos de los fármacos , Spodoptera/metabolismo
15.
Anal Biochem ; 362(2): 236-44, 2007 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-17266917

RESUMEN

To establish a simple and sensitive method to detect protein N-myristoylation, the usefulness of a newly developed cell-free protein synthesis system derived from insect cells for detecting protein N-myristoylation by in vitro metabolic labeling was examined. The results showed that in vitro translation of cDNA coding for N-myristoylated protein in the presence of [(3)H]myristic acid followed by SDS-PAGE and fluorography is a useful method for rapid detection of protein N-myristoylation. Differential labeling of N-myristoylated model proteins with [(3)H]leucine, [(3)H]myristic acid, and [(35)S]methionine revealed that the removal of the initiating Met during the N-myristoylation reaction could be detected using this system. Analysis of the N-myristoylation of a series of model proteins with mutated N-myristoylation motifs revealed that the amino acid sequence requirements for the N-myristoylation reaction in this system are quite similar to those observed in the rabbit reticulocyte lysate system. N-myristoylation of tBid (a posttranslationally N-myristoylated cytotoxic protein that could not be expressed in transfected cells) was successfully detected in this assay system. Thus, metabolic labeling in an insect cell-free protein synthesis system is an effective strategy to detect co- and posttranslational protein N-myristoylation irrespective of the cytotoxicity of the protein.


Asunto(s)
Ácido Mirístico/metabolismo , Biosíntesis de Proteínas , Procesamiento Proteico-Postraduccional , Secuencia de Aminoácidos , Animales , Western Blotting , Células COS , Sistema Libre de Células/metabolismo , Chlorocebus aethiops , Electroforesis en Gel de Poliacrilamida , Inmunoprecipitación , Insectos/citología , Insectos/genética , Insectos/metabolismo , Metionina/química , Metionina/metabolismo , Modelos Biológicos , Ácido Mirístico/química , Isótopos de Azufre/química , Tritio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...