Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Plant Cell ; 35(6): 1868-1887, 2023 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-36945744

RESUMEN

Small RNAs (sRNAs) associate with ARGONAUTE (AGO) proteins forming effector complexes with key roles in gene regulation and defense responses against molecular parasites. In multicellular eukaryotes, extensive duplication and diversification of RNA interference (RNAi) components have resulted in intricate pathways for epigenetic control of gene expression. The unicellular alga Chlamydomonas reinhardtii also has a complex RNAi machinery, including 3 AGOs and 3 DICER-like proteins. However, little is known about the biogenesis and function of most endogenous sRNAs. We demonstrate here that Chlamydomonas contains uncommonly long (>26 nt) sRNAs that associate preferentially with AGO1. Somewhat reminiscent of animal PIWI-interacting RNAs, these >26 nt sRNAs are derived from moderately repetitive genomic clusters and their biogenesis is DICER-independent. Interestingly, the sequences generating these >26-nt sRNAs have been conserved and amplified in several Chlamydomonas species. Moreover, expression of these longer sRNAs increases substantially under nitrogen or sulfur deprivation, concurrently with the downregulation of predicted target transcripts. We hypothesize that the transposon-like sequences from which >26-nt sRNAs are produced might have been ancestrally targeted for silencing by the RNAi machinery but, during evolution, certain sRNAs might have fortuitously acquired endogenous target genes and become integrated into gene regulatory networks.


Asunto(s)
Chlamydomonas reinhardtii , Chlamydomonas , Animales , Chlamydomonas/genética , Chlamydomonas/metabolismo , Interferencia de ARN , Regulación de la Expresión Génica , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo
2.
Microorganisms ; 11(3)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36985205

RESUMEN

Salmonella enterica is, globally, an important cause of human illness with beef being a significant attributable source. In the human patient, systemic Salmonella infection requires antibiotic therapy, and when strains are multidrug resistant (MDR), no effective treatment may be available. MDR in bacteria is often associated with the presence of mobile genetic elements (MGE) that mediate horizontal spread of antimicrobial resistance (AMR) genes. In this study, we sought to determine the potential relationship of MDR in bovine Salmonella isolates with MGE. The present study involved 111 bovine Salmonella isolates obtained collectively from specimens derived from healthy cattle or their environments at Midwestern U.S. feedyards (2000-2001, n = 19), or specimens from sick cattle submitted to the Nebraska Veterinary Diagnostic Center (2010-2020, n = 92). Phenotypically, 33/111 isolates (29.7%) were MDR (resistant to ≥3 drug classes). Based on whole-genome sequencing (WGS; n = 41) and PCR (n = 111), a MDR phenotype was strongly associated (OR = 186; p < 0.0001) with carriage of ISVsa3, an IS91-like Family transposase. In all 41 isolates analyzed by WGS ((31 MDR and 10 non-MDR (resistant to 0-2 antibiotic classes)), MDR genes were associated with carriage of ISVsa3, most often on an IncC type plasmid carrying blaCMY-2. The typical arrangement was floR, tet(A), aph(6)-Id, aph(3″)-Ib, and sul2 flanked by ISVsa3. These results suggest that AMR genes in MDR S. enterica isolates of cattle are frequently associated with ISVsa3 and carried on IncC plasmids. Further research is needed to better understand the role of ISVsa3 in dissemination of MDR Salmonella strains.

3.
J Med Virol ; 95(2): e28521, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36691924

RESUMEN

The binding of interferon (IFN) to its receptors leads to formation of IFN-stimulated gene factor 3 (ISGF3) complex that activates the transcription of cellular IFN-regulated genes. IFN regulatory factor 9 (IRF9, also called ISGF3γ or p48) is a key component of ISGF3. However, there is limited knowledge regarding the molecular evolution of IRF9 among vertebrates. In this study, we have identified the existence of the IRF9 gene in cartilaginous fish (sharks). Among primates, several isoforms unique to old world moneys and great apes are identified. These IRF9 isoforms are named as primate-specific IRF9 (PS-IRF9) to distinguish from canonical IRF9. PS-IRF9 originates from a unique exon usage and differential splicing in the IRF9 gene. Although the N-terminus are identical for all IRF9s, the C-terminal regions of the PS-IRF9 are completely different from canonical IRF9. In humans, two PS-IRF9s are identified and their RNA transcripts were detected in human primary peripheral blood mononuclear cells. In addition, human PS-IRF9 proteins were detected in human cell lines. Sharing the N-terminal exons with the canonical IRF9 proteins, PS-IRF9 is predicted to bind to the same DNA sequences as the canonical IRF9 proteins. As the C-terminal regions of IRFs are the determinants of IRF functions, PS-IRF9 may offer unique biological functions and represent a novel signaling molecule involved in the regulation of the IFN pathway in a primate-specific manner.


Asunto(s)
Leucocitos Mononucleares , Primates , Animales , Humanos , Línea Celular , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/genética , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/metabolismo , Leucocitos Mononucleares/metabolismo , Primates/metabolismo , Isoformas de Proteínas/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(30): e2201160119, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35867834

RESUMEN

Metabolic extremes provide opportunities to understand enzymatic and metabolic plasticity and biotechnological tools for novel biomaterial production. We discovered that seed oils of many Thunbergia species contain up to 92% of the unusual monounsaturated petroselinic acid (18:1Δ6), one of the highest reported levels for a single fatty acid in plants. Supporting the biosynthetic origin of petroselinic acid, we identified a Δ6-stearoyl-acyl carrier protein (18:0-ACP) desaturase from Thunbergia laurifolia, closely related to a previously identified Δ6-palmitoyl-ACP desaturase that produces sapienic acid (16:1Δ6)-rich oils in Thunbergia alata seeds. Guided by a T. laurifolia desaturase crystal structure obtained in this study, enzyme mutagenesis identified key amino acids for functional divergence of Δ6 desaturases from the archetypal Δ9-18:0-ACP desaturase and mutations that result in nonnative enzyme regiospecificity. Furthermore, we demonstrate the utility of the T. laurifolia desaturase for the production of unusual monounsaturated fatty acids in engineered plant and bacterial hosts. Through stepwise metabolic engineering, we provide evidence that divergent evolution of extreme petroselinic acid and sapienic acid production arises from biosynthetic and metabolic functional specialization and enhanced expression of specific enzymes to accommodate metabolism of atypical substrates.


Asunto(s)
Acanthaceae , Ácidos Grasos Monoinsaturados , Proteínas de Plantas , Estearoil-CoA Desaturasa , Acanthaceae/metabolismo , Proteína Transportadora de Acilo/metabolismo , Evolución Molecular , Ácidos Grasos Monoinsaturados/metabolismo , Mutagénesis , Aceites de Plantas/química , Proteínas de Plantas/análisis , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Semillas/enzimología , Estearoil-CoA Desaturasa/análisis , Estearoil-CoA Desaturasa/genética , Estearoil-CoA Desaturasa/metabolismo
5.
BMC Bioinformatics ; 22(1): 513, 2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34674629

RESUMEN

BACKGROUND: Systems-level analyses, such as differential gene expression analysis, co-expression analysis, and metabolic pathway reconstruction, depend on the accuracy of the transcriptome. Multiple tools exist to perform transcriptome assembly from RNAseq data. However, assembling high quality transcriptomes is still not a trivial problem. This is especially the case for non-model organisms where adequate reference genomes are often not available. Different methods produce different transcriptome models and there is no easy way to determine which are more accurate. Furthermore, having alternative-splicing events exacerbates such difficult assembly problems. While benchmarking transcriptome assemblies is critical, this is also not trivial due to the general lack of true reference transcriptomes. RESULTS: In this study, we first provide a pipeline to generate a set of the simulated benchmark transcriptome and corresponding RNAseq data. Using the simulated benchmarking datasets, we compared the performance of various transcriptome assembly approaches including both de novo and genome-guided methods. The results showed that the assembly performance deteriorates significantly when alternative transcripts (isoforms) exist or for genome-guided methods when the reference is not available from the same genome. To improve the transcriptome assembly performance, leveraging the overlapping predictions between different assemblies, we present a new consensus-based ensemble transcriptome assembly approach, ConSemble. CONCLUSIONS: Without using a reference genome, ConSemble using four de novo assemblers achieved an accuracy up to twice as high as any de novo assemblers we compared. When a reference genome is available, ConSemble using four genome-guided assemblies removed many incorrectly assembled contigs with minimal impact on correctly assembled contigs, achieving higher precision and accuracy than individual genome-guided methods. Furthermore, ConSemble using de novo assemblers matched or exceeded the best performing genome-guided assemblers even when the transcriptomes included isoforms. We thus demonstrated that the ConSemble consensus strategy both for de novo and genome-guided assemblers can improve transcriptome assembly. The RNAseq simulation pipeline, the benchmark transcriptome datasets, and the script to perform the ConSemble assembly are all freely available from: http://bioinfolab.unl.edu/emlab/consemble/ .


Asunto(s)
Genoma , Transcriptoma , Consenso
6.
mBio ; 12(4): e0115321, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34340536

RESUMEN

The common marmoset (Callithrix jacchus) is an omnivorous New World primate whose diet in the wild includes large amounts of fruit, seeds, flowers, and a variety of lizards and invertebrates. Marmosets also feed heavily on tree gums and exudates, and they have evolved unique morphological and anatomical characteristics to facilitate gum feeding (gummivory). In this study, we characterized the fecal microbiomes of adult and infant animals from a captive population of common marmosets at the Callitrichid Research Center at the University of Nebraska at Omaha under their normal dietary and environmental conditions. The microbiomes of adult animals were dominated by species of Bifidobacterium, Bacteroides, Prevotella, Phascolarctobacterium, Megamonas, and Megasphaera. Culturing and genomic analysis of the Bifidobacterium populations from adult animals identified four known marmoset-associated species (B. reuteri, B. aesculapii, B. myosotis, and B. hapali) and three unclassified taxa of Bifidobacterium that are phylogenetically distinct. Species-specific quantitative PCR (qPCR) confirmed that these same species of Bifidobacterium are abundant members of the microbiome throughout the lives of the animals. Genomic loci in each Bifidobacterium species encode enzymes to support growth and major marmoset milk oligosaccharides during breastfeeding; however, metabolic islands that can support growth on complex polysaccharide substrates in the diets of captive adults (pectin, xyloglucan, and xylan), including loci in B. aesculapii that can support its unique ability to grow on arabinogalactan-rich tree gums, were species-specific. IMPORTANCEBifidobacterium species are recognized as important, beneficial microbes in the human gut microbiome, and their ability colonize individuals at different stages of life is influenced by host, dietary, environmental, and ecological factors, which is poorly understood. The common marmoset is an emerging nonhuman primate model with a short maturation period, making this model amenable to study the microbiome throughout a life history. Features of the microbiome in captive marmosets are also shared with human gut microbiomes, including abundant populations of Bifidobacterium species. Our studies show that several species of Bifidobacterium are dominant members of the captive marmoset microbiome throughout their life history. Metabolic capacities in genomes of the marmoset Bifidobacterium species suggest species-specific adaptations to different components of the captive marmoset diet, including the unique capacity in B. aesculapii for degradation of gum arabic, suggesting that regular dietary exposure in captivity may be important for preserving gum-degrading species in the microbiome.


Asunto(s)
Adaptación Fisiológica/genética , Bifidobacterium/genética , Bifidobacterium/fisiología , Callithrix/microbiología , Microbioma Gastrointestinal/genética , Genoma Bacteriano , Especificidad de la Especie , Animales , Bacterias/clasificación , Bacterias/genética , ADN Bacteriano/genética , Dieta , Heces/microbiología , Femenino , Microbioma Gastrointestinal/fisiología , Goma Arábiga/metabolismo , Masculino , Filogenia
8.
Microbiol Resour Announc ; 10(2)2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33446582

RESUMEN

A moderately acidophilic Geobacter sp. strain, FeAm09, was isolated from forest soil. The complete genome sequence is 4,099,068 bp with an average GC content of 61.1%. No plasmids were detected. The genome contains a total of 3,843 genes and 3,608 protein-coding genes, including genes supporting iron and nitrogen biogeochemical cycling.

9.
Database (Oxford) ; 20202020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32500918

RESUMEN

Root-associated genes play an important role in plants. Despite the fact that there have been studies on root biology, information on genes that are specifically expressed or upregulated in roots is poorly collected. There exist very few databases dedicated to genes and promoters associated with root biology, preventing effective root-related studies. Therefore, we analyzed multiple types of omics data to identify root-associated genes in maize, soybean, and sorghum and constructed a comprehensive online database of these genes and their promoter sequences. This database creates a pivotal platform capable of stimulating and facilitating further studies on manipulating root growth and development.


Asunto(s)
Bases de Datos Genéticas , Genes de Plantas/genética , Magnoliopsida/genética , Raíces de Plantas , Plantas Comestibles/genética , Biología Computacional , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , Regiones Promotoras Genéticas/genética
10.
Sci Rep ; 10(1): 4508, 2020 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-32161340

RESUMEN

Interferon regulatory factor 3 (IRF3) and IRF7 are closely related IRF members and the major factors for the induction of interferons, a key component in vertebrate innate immunity. However, there is limited knowledge regarding the evolution and adaptation of those IRFs to the environments. Two unique motifs in IRF3 and 7 were identified. One motif, GASSL, is highly conserved throughout the evolution of IRF3 and 7 and located in the signal response domain. Another motif, DPHK, is in the DNA-binding domain. The ancestral protein of IRF3 and 7 seemed to possess the DPHK motif. In the ray-finned fish lineage, while the DPHK is maintained in IRF7, the motif in IRF3 is changed to NPHK with a D → N amino acid substitution. The D → N substitution are also found in amphibian IRF3 but not in amphibian IRF7. Terrestrial animals such as reptiles and mammals predominantly use DPHK sequences in both IRF3 and 7. However, the D → N substitution in IRF3 DPHK is again found in cetaceans such as whales and dolphins as well as in marsupials. These observations suggest that the D → N substitutions in the IRF3 DPHK motif is likely to be associated with vertebrate's adaptations to aquatic environments and other environmental changes.


Asunto(s)
Adaptación Biológica , Evolución Biológica , Factor 3 Regulador del Interferón/genética , Factor 7 Regulador del Interferón/genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Secuencia Conservada , Evolución Molecular , Factor 3 Regulador del Interferón/química , Mamíferos , Modelos Moleculares , Filogenia , Conformación Proteica
11.
Methods ; 176: 1-3, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32151669

Asunto(s)
RNA-Seq/métodos
12.
Methods ; 176: 14-24, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31176772

RESUMEN

Whole genome duplications (WGD) occur widely in plants, but the effects of these events impact all branches of life. WGD events have major evolutionary impacts, often leading to major structural changes within the chromosomes and massive changes in gene expression that facilitate rapid speciation and gene diversification. Even for species that currently have diploid genomes, the impact of ancestral duplication events is still present in the genomes, especially in the context of highly similar gene families that are retained from WGD. However, the impact of these ploidies on various bioinformatics workflows has not been studied well. In this review, we overview biological significance of polyploidy in different organisms. We describe the impact of having polyploid transcriptomes on bioinformatics analyses, especially focusing on transcriptome assembly and transcript quantification. We discuss the benefits of using simulated benchmarking data when we examine the performance of various methods. We also present an example strategy to generate simulated allopolyploid transcriptomes and RNAseq datasets and how these benchmark datasets can be used to assess the performance of transcript assembly and quantification methods. Our benchmarking study shows that all transcriptome assembly methods are affected by having polyploid genomes. Quantification accuracy is also impacted by polyploidy depending on the method. These simulated datasets can be adapted for testing, such as, read mapping, variant calling, and differential expression using biologically realistic conditions.


Asunto(s)
Biología Computacional/métodos , Poliploidía , RNA-Seq/métodos , Transcriptoma/genética , Alineación de Secuencia
13.
Bioinformatics ; 34(8): 1270-1277, 2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29186344

RESUMEN

Motivation: Proteins often include multiple conserved domains. Various evolutionary events including duplication and loss of domains, domain shuffling, as well as sequence divergence contribute to generating complexities in protein structures, and consequently, in their functions. The evolutionary history of proteins is hence best modeled through networks that incorporate information both from the sequence divergence and the domain content. Here, a game-theoretic approach proposed for protein network construction is adapted into the framework of multi-objective optimization, and extended to incorporate clustering refinement procedure. Results: The new method, MOCASSIN-prot, was applied to cluster multi-domain proteins from ten genomes. The performance of MOCASSIN-prot was compared against two protein clustering methods, Markov clustering (TRIBE-MCL) and spectral clustering (SCPS). We showed that compared to these two methods, MOCASSIN-prot, which uses both domain composition and quantitative sequence similarity information, generates fewer false positives. It achieves more functionally coherent protein clusters and better differentiates protein families. Availability and implementation: MOCASSIN-prot, implemented in Perl and Matlab, is freely available at http://bioinfolab.unl.edu/emlab/MOCASSINprot. Contact: emoriyama2@unl.edu. Supplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Algoritmos , Dominios Proteicos , Análisis de Secuencia de Proteína/métodos , Animales , Bacterias/metabolismo , Análisis por Conglomerados , Eucariontes/metabolismo , Programas Informáticos
14.
Sci Rep ; 7(1): 5462, 2017 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-28710366

RESUMEN

The unicellular alga Chlamydomonas reinhardtii contains many types of small RNAs (sRNAs) but the biological role(s) of bona fide microRNAs (miRNAs) remains unclear. To address their possible function(s) in responses to nutrient availability, we examined miRNA expression in cells cultured under different trophic conditions (mixotrophic in the presence of acetate or photoautotrophic in the presence or absence of nitrogen). We also reanalyzed miRNA expression data in Chlamydomonas subject to sulfur or phosphate deprivation. Several miRNAs were differentially expressed under the various trophic conditions. However, in transcriptome analyses, the majority of their predicted targets did not show expected changes in transcript abundance, suggesting that they are not subject to miRNA-mediated RNA degradation. Mutant strains, defective in sRNAs or in ARGONAUTE3 (a key component of sRNA-mediated gene silencing), did not display major phenotypic defects when grown under multiple nutritional regimes. Additionally, Chlamydomonas miRNAs were not conserved, even in algae of the closely related Volvocaceae family, and many showed features resembling those of recently evolved, species-specific miRNAs in the genus Arabidopsis. Our results suggest that, in C. reinhardtii, miRNAs might be subject to relatively fast evolution and have only a minor, largely modulatory role in gene regulation under diverse trophic states.


Asunto(s)
Chlamydomonas reinhardtii/genética , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , Fosfatos/deficiencia , ARN de Algas/genética , Azufre/metabolismo , Ácido Acético/metabolismo , Ácido Acético/farmacología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas Argonautas/deficiencia , Proteínas Argonautas/genética , Evolución Biológica , Chlamydomonas reinhardtii/efectos de los fármacos , Chlamydomonas reinhardtii/metabolismo , MicroARNs/metabolismo , Nitrógeno/metabolismo , Nitrógeno/farmacología , Fosfatos/farmacología , Filogenia , ARN de Algas/metabolismo , Azufre/farmacología
15.
PLoS One ; 11(12): e0167376, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27911958

RESUMEN

The rhesus macaque (Macaca mulatta) is widely used in molecular evolutionary analyses, particularly to identify genes under adaptive or unique evolution in the human lineage. For such studies, it is necessary to align nucleotide sequences of homologous protein-coding genes among multiple species. The validity of these analyses is dependent on high quality genomic data. However, for most mammalian species (other than humans and mice), only draft genomes are available. There has been concern that some results obtained from evolutionary analyses using draft genomes may not be correct. The rhesus macaque provides a unique opportunity to determine whether an improved genome (MacaM) yields better results than a draft genome (rheMac2) for evolutionary studies. We compared protein-coding genes annotated in the rheMac2 and MacaM genomes with their human orthologs. We found many genes annotated in rheMac2 had apparently spurious sequences not present in genes derived from MacaM. The rheMac2 annotations also appeared to inflate a frequently used evolutionary index, ω (the ratio of nonsynonymous to synonymous substitution rates). Genes with these spurious sequences must be filtered out from evolutionary analyses to obtain correct results. With the MacaM genome, improved sequence information means many more genes can be examined for indications of selection. These results indicate how upgrading genomes from draft status to a higher level of quality can improve interpretation of evolutionary patterns.


Asunto(s)
Evolución Molecular , Genoma , Macaca mulatta/genética , Anotación de Secuencia Molecular , Animales , Humanos
16.
BMC Genomics ; 17 Suppl 7: 511, 2016 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-27557119

RESUMEN

BACKGROUND: We recently reported the identification of Bacillus sp. NRRL B-14911 that induces heart autoimmunity by generating cardiac-reactive T cells through molecular mimicry. This marine bacterium was originally isolated from the Gulf of Mexico, but no associations with human diseases were reported. Therefore, to characterize its biological and medical significance, we sought to determine and analyze the complete genome sequence of Bacillus sp. NRRL B-14911. RESULTS: Based on the phylogenetic analysis of 16S ribosomal RNA (rRNA) genes, sequence analysis of the 16S-23S rDNA intergenic transcribed spacers, phenotypic microarray, and matrix-assisted laser desorption ionization time-of-flight mass spectrometry, we propose that this organism belongs to the species Bacillus infantis, previously shown to be associated with sepsis in a newborn child. Analysis of the complete genome of Bacillus sp. NRRL B-14911 revealed several virulence factors including adhesins, invasins, colonization factors, siderophores and transporters. Likewise, the bacterial genome encodes a wide range of methyl transferases, transporters, enzymatic and biochemical pathways, and insertion sequence elements that are distinct from other closely related bacilli. CONCLUSIONS: The complete genome sequence of Bacillus sp. NRRL B-14911 provided in this study may facilitate genetic manipulations to assess gene functions associated with bacterial survival and virulence. Additionally, this bacterium may serve as a useful tool to establish a disease model that permits systematic analysis of autoimmune events in various susceptible rodent strains.


Asunto(s)
Bacillus/genética , Genoma Bacteriano/genética , Corazón/microbiología , Miocardio/inmunología , Bacillus/patogenicidad , Genómica , Corazón/fisiopatología , Humanos , Anotación de Secuencia Molecular , Miocardio/patología , Fenotipo , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
17.
Genome Announc ; 4(3)2016 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-27340076

RESUMEN

Streptomyces aureofaciens is a Gram-positive actinomycete that produces the antibiotics tetracycline and chlortetracycline. Here, we report the assembly and initial annotation of the draft genome sequence of S. aureofaciens ATCC strain 10762.

18.
PLoS One ; 11(3): e0151023, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26963722

RESUMEN

Trace amine-associated receptors (TAARs) are a member of the G-protein-coupled receptor superfamily and are known to be expressed in olfactory sensory neurons. A limited number of molecular evolutionary studies have been done for TAARs so far. To elucidate how lineage-specific evolution contributed to their functional divergence, we examined 30 metazoan genomes. In total, 493 TAAR gene candidates (including 84 pseudogenes) were identified from 26 vertebrate genomes. TAARs were not identified from non-vertebrate genomes. An ancestral-type TAAR-like gene appeared to have emerged in lamprey. We found four therian-specific TAAR subfamilies (one eutherian-specific and three metatherian-specific) in addition to previously known nine subfamilies. Many species-specific TAAR gene duplications and losses contributed to a large variation of TAAR gene numbers among mammals, ranging from 0 in dolphin to 26 in flying fox. TAARs are classified into two groups based on binding preferences for primary or tertiary amines as well as their sequence similarities. Primary amine-detecting TAARs (TAAR1-4) have emerged earlier, generally have single-copy orthologs (very few duplication or loss), and have evolved under strong functional constraints. In contrast, tertiary amine-detecting TAARs (TAAR5-9) have emerged more recently and the majority of them experienced higher rates of gene duplications. Protein members that belong to the tertiary amine-detecting TAAR group also showed the patterns of positive selection especially in the area surrounding the ligand-binding pocket, which could have affected ligand-binding activities and specificities. Expansions of the tertiary amine-detecting TAAR gene family may have played important roles in terrestrial adaptations of therian mammals. Molecular evolution of the TAAR gene family appears to be governed by a complex, species-specific, interplay between environmental and evolutionary factors.


Asunto(s)
Evolución Molecular , Interacción Gen-Ambiente , Genoma Humano , Receptores Acoplados a Proteínas G/genética , Animales , Humanos
19.
BMC Res Notes ; 9: 18, 2016 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-26746870

RESUMEN

BACKGROUND: Diabrotica virgifera virgifera, western corn rootworm, is one of the most devastating species in North America. D. v. virgifera neonates crawl through the soil to locate the roots on which they feed. Carbon dioxide (CO2) is one of the important volatile cues that attract D. v. virgifera larvae to roots. RESULTS: In this study, we identified three putative D. v. virgifera gustatory receptor genes (Dvv_Gr1, Dvv_Gr2, and Dvv_Gr3). Phylogenetic analyses confirmed their orthologous relationships with known insect CO2 receptor genes from Drosophila, mosquitoes, and Tribolium. The phylogenetic reconstruction of insect CO2 receptor proteins and the gene expression profiles were analyzed. Quantitative analysis of gene expression indicated that the patterns of expression of these three candidate genes vary among larval tissues (i.e., head, integument, fat body, and midgut) and different development stages (i.e., egg, three larval stages, adult male and female). CONCLUSION: The Dvv_Gr2 gene exhibited highest expression in heads and neonates, suggesting its importance in allowing neonate larvae to orient to its host plant. Similar expression patterns across tissues and developmental stages for Dvv_Gr1 and Dvv_Gr3 suggest a potentially different role. Findings from this study will allow further exploration of the functional role of specific CO2 receptor proteins in D. v. virgifera.


Asunto(s)
Escarabajos/genética , Genes de Insecto , Proteínas de Insectos/genética , Receptores de Superficie Celular/genética , Transcriptoma , Animales , Regulación del Desarrollo de la Expresión Génica , Funciones de Verosimilitud , Filogenia , Receptores de Superficie Celular/metabolismo
20.
BMC Genomics ; 16: 558, 2015 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-26220297

RESUMEN

BACKGROUND: Despite a number of recent reports of insect resistance to transgenic crops expressing insecticidal toxins from Bacillus thuringiensis (Bt), little is known about the mechanism of resistance to these toxins. The purpose of this study is to identify genes associated with the mechanism of Cry1F toxin resistance in European corn borer (Ostrinia nubilalis Hübner). For this, we compared the global transcriptomic response of laboratory selected resistant and susceptible O. nubilalis strain to Cry1F toxin. We further identified constitutive transcriptional differences between the two strains. RESULTS: An O. nubilalis midgut transcriptome of 36,125 transcripts was assembled de novo from 106 million Illumina HiSeq and Roche 454 reads and used as a reference for estimation of differential gene expression analysis. Evaluation of gene expression profiles of midgut tissues from the Cry1F susceptible and resistant strains after toxin exposure identified a suite of genes that responded to the toxin in the susceptible strain (n = 1,654), but almost 20-fold fewer in the resistant strain (n = 84). A total of 5,455 midgut transcripts showed significant constitutive expression differences between Cry1F susceptible and resistant strains. Transcripts coding for previously identified Cry toxin receptors, cadherin and alkaline phosphatase and proteases were also differentially expressed in the midgut of the susceptible and resistant strains. CONCLUSIONS: Our current study provides a valuable resource for further molecular characterization of Bt resistance and insect response to Cry1F toxin in O. nubilalis and other pest species.


Asunto(s)
Toxinas Bacterianas/toxicidad , Mariposas Nocturnas/genética , Precursores de Proteínas/toxicidad , Transcriptoma/efectos de los fármacos , Animales , Bacillus thuringiensis/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Resistencia a los Insecticidas/genética , Mucosa Intestinal/metabolismo , Mariposas Nocturnas/efectos de los fármacos , Mariposas Nocturnas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , ARN/análisis , ARN/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ARN , Zea mays/genética , Zea mays/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA