Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioresour Technol ; 387: 129595, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37541546

RESUMEN

Despite known metabolic versatility of Burkholderia spp., sugar metabolism and end-product synthesis patterns in Burkholderia thailandensis have been poorly characterized. This work has demonstrated that B. thailandensis is capable of simultaneously uptaking glucose and xylose and accumulating up to 64% of its dry mass as poly(3-hydroxyalkanoate) (PHA) biopolymers, resulting in a PHA titer of up to 3.8 g L-1 in shake flasks. Rhamnolipids - mainly (68-75%) in the form of Rha-Rha-C14-C14 - were produced concomitantly with a titer typically in the range of 0.2-0.4 g L-1. Gluconic and xylonic acids were also detected in titers of up to 5.3 g L-1, and while gluconic acid appeared to be back consumed, xylonic acid formed as a major end product. This first example of co-production of three products from mixed sugars using B. thailandensis paves the way for improving biorefinery economics.


Asunto(s)
Burkholderia , Azúcares , Azúcares/metabolismo , Burkholderia/metabolismo , Glucosa/metabolismo
2.
West J Emerg Med ; 21(6): 83-87, 2020 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-33052816

RESUMEN

INTRODUCTION: We are currently in the midst of the coronavirus disease 2019 (COVID-19) pandemic. Research into previous infectious disease outbreaks has shown that healthcare workers are at increased risk for burnout during these dire times, with those on the front lines at greatest risk. The purpose of this prospective study was to determine the effect that the COVID-19 pandemic has had on the wellness of emergency physicians (EP). METHODS: A survey was sent to 137 EPs in a multi-hospital network in eastern Pennsylvania. We compared 10 primary and two supplemental questions based on how the physicians had been feeling in the prior 2-3 weeks (COVID-19 period) to the same questions based on how they were feeling in the prior 4-6 months (pre-COVID-19 period). RESULTS: We received 55 responses to the survey (40.1% response rate). The study found that during the pandemic, EPs felt less in control (p-value = 0.001); felt decreased happiness while at work (p-value 0.001); had more trouble falling asleep (p-value = 0.001); had an increased sense of dread when thinking of work needing to be done (p-value = 0.04); felt more stress on days not at work (p-value <0.0001); and were more concerned about their own health (p-value <0.0001) and the health of their families and loved ones (p-value <0.0001). CONCLUSION: This study showed a statistically significant decrease in EP wellness during the COVID-19 pandemic when compared to the pre-pandemic period. We need to be aware of evidence-based recommendations to help mitigate the risks and prevent physician burnout.


Asunto(s)
Agotamiento Profesional/prevención & control , Infecciones por Coronavirus/epidemiología , Salud Laboral , Estrés Laboral/epidemiología , Médicos/psicología , Neumonía Viral/epidemiología , Adulto , Agotamiento Profesional/epidemiología , COVID-19 , Infecciones por Coronavirus/prevención & control , Medicina de Emergencia/estadística & datos numéricos , Servicio de Urgencia en Hospital/organización & administración , Femenino , Humanos , Masculino , Pandemias/prevención & control , Pennsylvania , Neumonía Viral/prevención & control , Estudios Prospectivos , Encuestas y Cuestionarios
3.
Protein Sci ; 24(4): 495-507, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25401264

RESUMEN

Type II R67 dihydrofolate reductase (DHFR) is a bacterial plasmid-encoded enzyme that is intrinsically resistant to the widely-administered antibiotic trimethoprim. R67 DHFR is genetically and structurally unrelated to E. coli chromosomal DHFR and has an unusual architecture, in that four identical protomers form a single symmetrical active site tunnel that allows only one substrate binding/catalytic event at any given time. As a result, substitution of an active-site residue has as many as four distinct consequences on catalysis, constituting an atypical model of enzyme evolution. Although we previously demonstrated that no single residue of the native active site is indispensable for function, library selection here revealed a strong bias toward maintenance of two native protomers per mutated tetramer. A variety of such "half-native" tetramers were shown to procure native-like catalytic activity, with similar KM values but kcat values 5- to 33-fold lower, illustrating a high tolerance for active-site substitutions. The selected variants showed a reduced thermal stability (Tm ∼12°C lower), which appears to result from looser association of the protomers, but generally showed a marked increase in resilience to heat denaturation, recovering activity to a significantly greater extent than the variant with no active-site substitutions. Our results suggest that the presence of two native protomers in the R67 DHFR tetramer is sufficient to provide native-like catalytic rate and thus ensure cellular proliferation.


Asunto(s)
Tetrahidrofolato Deshidrogenasa/química , Tetrahidrofolato Deshidrogenasa/genética , Dominio Catalítico/genética , Farmacorresistencia Bacteriana , Estabilidad de Enzimas/genética , Mutagénesis Sitio-Dirigida , Plásmidos , Desnaturalización Proteica , Multimerización de Proteína , Tetrahidrofolato Deshidrogenasa/metabolismo , Trimetoprim
4.
ACS Chem Biol ; 9(12): 2843-51, 2014 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-25265531

RESUMEN

The Baeyer-Villiger monooxygenases (BVMOs) are microbial enzymes that catalyze the synthetically useful Baeyer-Villiger oxidation reaction. The available BVMO crystal structures all lack a substrate or product bound in a position that would determine the substrate specificity and stereospecificity of the enzyme. Here, we report two crystal structures of cyclohexanone monooxygenase (CHMO) with its product, ε-caprolactone, bound: the CHMO(Tight) and CHMO(Loose) structures. The CHMO(Tight) structure represents the enzyme state in which substrate acceptance and stereospecificity is determined, providing a foundation for engineering BVMOs with altered substrate spectra and/or stereospecificity. The CHMO(Loose) structure is the first structure where the product is solvent accessible. This structure represents the enzyme state upon binding and release of the substrate and product. In addition, the role of the invariant Arg329 in chaperoning the substrate/product during the catalytic cycle is highlighted. Overall, these data provide a structural framework for the engineering of BVMOs with altered substrate spectra and/or stereospecificity.


Asunto(s)
Proteínas Bacterianas/química , Caproatos/química , Lactonas/química , Oxigenasas/química , Rhodococcus/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Sitios de Unión , Biocatálisis , Caproatos/metabolismo , Cristalografía por Rayos X , Expresión Génica , Lactonas/metabolismo , Modelos Moleculares , Mutación , Oxigenasas/genética , Oxigenasas/aislamiento & purificación , Oxigenasas/metabolismo , Unión Proteica , Conformación Proteica , Ingeniería de Proteínas , Rhodococcus/enzimología , Rhodococcus/genética , Estereoisomerismo , Especificidad por Sustrato
5.
Appl Environ Microbiol ; 79(10): 3282-93, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23524667

RESUMEN

Whereas the biochemical properties of the monooxygenase components that catalyze the oxidation of 2,5-diketocamphane and 3,6-diketocamphane (2,5-DKCMO and 3,6-DKCMO, respectively) in the initial catabolic steps of (+) and (-) isomeric forms of camphor (CAM) metabolism in Pseudomonas putida ATCC 17453 are relatively well characterized, the actual identity of the flavin reductase (Fred) component that provides the reduced flavin to the oxygenases has hitherto been ill defined. In this study, a 37-kDa Fred was purified from a camphor-induced culture of P. putida ATCC 17453 and this facilitated cloning and characterization of the requisite protein. The active Fred is a homodimer with a subunit molecular weight of 18,000 that uses NADH as an electron donor (Km = 32 µM), and it catalyzes the reduction of flavin mononucleotide (FMN) (Km = 3.6 µM; kcat = 283 s(-1)) in preference to flavin adenine dinucleotide (FAD) (Km = 19 µM; kcat = 128 s(-1)). Sequence determination of ∼40 kb of the CAM degradation plasmid revealed the locations of two isofunctional 2,5-DKCMO genes (camE25-1 for 2,5-DKCMO-1 and camE25-2 for 2,5-DKCMO-2) as well as that of a 3,6-DKCMO-encoding gene (camE36). In addition, by pulsed-field gel electrophoresis, the CAM plasmid was established to be linear and ∼533 kb in length. To enable functional assessment of the two-component monooxygenase system in Baeyer-Villiger oxidations, recombinant plasmids expressing Fred in tandem with the respective 2,5-DKCMO- and 3,6-DKCMO-encoding genes in Escherichia coli were constructed. Comparative substrate profiling of the isofunctional 2,5-DCKMOs did not yield obvious differences in Baeyer-Villiger biooxidations, but they are distinct from 3,6-DKCMO in the stereoselective oxygenations with various mono- and bicyclic ketone substrates.


Asunto(s)
Alcanfor/metabolismo , FMN Reductasa/metabolismo , Oxigenasas/metabolismo , Pseudomonas putida/enzimología , Acetilcoenzima A/metabolismo , Secuencia de Aminoácidos , Clonación Molecular , Activación Enzimática , Estabilidad de Enzimas , Escherichia coli/genética , Escherichia coli/metabolismo , FMN Reductasa/genética , FMN Reductasa/aislamiento & purificación , Mononucleótido de Flavina/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Genes Bacterianos , Datos de Secuencia Molecular , Oxidación-Reducción , Oxigenasas/genética , Plásmidos/genética , Plásmidos/metabolismo , Pseudomonas putida/genética
6.
Appl Environ Microbiol ; 78(7): 2200-12, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22267661

RESUMEN

A dimeric Baeyer-Villiger monooxygenase (BVMO) catalyzing the lactonization of 2-oxo-Δ(3)-4,5,5-trimethylcyclopentenylacetyl-coenzyme A (CoA), a key intermediate in the metabolism of camphor by Pseudomonas putida ATCC 17453, had been initially characterized in 1983 by Ougham and coworkers (H. J. Ougham, D. G. Taylor, and P. W. Trudgill, J. Bacteriol. 153:140-152, 1983). Here we cloned and overexpressed the 2-oxo-Δ(3)-4,5,5-trimethylcyclopentenylacetyl-CoA monooxygenase (OTEMO) in Escherichia coli and determined its three-dimensional structure with bound flavin adenine dinucleotide (FAD) at a 1.95-Å resolution as well as with bound FAD and NADP(+) at a 2.0-Å resolution. OTEMO represents the first homodimeric type 1 BVMO structure bound to FAD/NADP(+). A comparison of several crystal forms of OTEMO bound to FAD and NADP(+) revealed a conformational plasticity of several loop regions, some of which have been implicated in contributing to the substrate specificity profile of structurally related BVMOs. Substrate specificity studies confirmed that the 2-oxo-Δ(3)-4,5,5-trimethylcyclopentenylacetic acid coenzyme A ester is preferred over the free acid. However, the catalytic efficiency (k(cat)/K(m)) favors 2-n-hexyl cyclopentanone (4.3 × 10(5) M(-1) s(-1)) as a substrate, although its affinity (K(m) = 32 µM) was lower than that of the CoA-activated substrate (K(m) = 18 µM). In whole-cell biotransformation experiments, OTEMO showed a unique enantiocomplementarity to the action of the prototypical cyclohexanone monooxygenase (CHMO) and appeared to be particularly useful for the oxidation of 4-substituted cyclohexanones. Overall, this work extends our understanding of the molecular structure and mechanistic complexity of the type 1 family of BVMOs and expands the catalytic repertoire of one of its original members.


Asunto(s)
Alcanfor/metabolismo , Clonación Molecular/métodos , Oxigenasas/genética , Oxigenasas/metabolismo , Pseudomonas putida/enzimología , Secuencia de Aminoácidos , Dicroismo Circular , Cristalografía por Rayos X , Ciclopentanos/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Flavina-Adenina Dinucleótido/química , Flavina-Adenina Dinucleótido/metabolismo , Datos de Secuencia Molecular , NADP/química , NADP/metabolismo , Oxidación-Reducción , Oxigenasas/química , Pseudomonas putida/genética , Análisis de Secuencia de ADN , Especificidad por Sustrato
8.
Chembiochem ; 12(5): 768-76, 2011 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-21351219

RESUMEN

Acyl transfer is a key reaction in biosynthesis, including synthesis of antibiotics and polyesters. Although researchers have long recognized the similar protein fold and catalytic machinery in acyltransferases and hydrolases, the molecular basis for the different reactivity has been a long-standing mystery. By comparison of X-ray structures, we identified a different oxyanion-loop orientation in the active site. In esterases/lipases a carbonyl oxygen points toward the active site, whereas in acyltransferases a NH of the main-chain amide points toward the active site. Amino acid sequence comparisons alone cannot identify such a difference in the main-chain orientation. To identify how this difference might change the reaction mechanism, we solved the X-ray crystal structure of Pseudomonas fluorescens esterase containing a sulfonate transition-state analogue bound to the active-site serine. This structure mimics the transition state for the attack of water on the acyl-enzyme and shows a bridging water molecule between the carbonyl oxygen mentioned above and the sulfonyl oxygen that mimics the attacking water. A possible mechanistic role for this bridging water molecule is to position and activate the attacking water molecule in hydrolases, but to deactivate the attacking water molecule in acyl transferases.


Asunto(s)
Aciltransferasas/química , Haemophilus influenzae/enzimología , Hidrolasas/química , Pseudomonas fluorescens/enzimología , Dominio Catalítico , Cristalografía por Rayos X , Esterasas/química , Modelos Moleculares , Conformación Proteica
9.
Biochemistry ; 49(9): 1931-42, 2010 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-20112920

RESUMEN

Many serine hydrolases catalyze perhydrolysis, the reversible formation of peracids from carboxylic acids and hydrogen peroxide. Recently, we showed that a single amino acid substitution in the alcohol binding pocket, L29P, in Pseudomonas fluorescens (SIK WI) aryl esterase (PFE) increased the specificity constant of PFE for peracetic acid formation >100-fold [Bernhardt et al. (2005) Angew. Chem., Int. Ed. 44, 2742]. In this paper, we extend this work to address the three following questions. First, what is the molecular basis of the increase in perhydrolysis activity? We previously proposed that the L29P substitution creates a hydrogen bond between the enzyme and hydrogen peroxide in the transition state. Here we report two X-ray structures of L29P PFE that support this proposal. Both structures show a main chain carbonyl oxygen closer to the active site serine as expected. One structure further shows acetate in the active site in an orientation consistent with reaction by an acyl-enzyme mechanism. We also detected an acyl-enzyme intermediate in the hydrolysis of epsilon-caprolactone by mass spectrometry. Second, can we further increase perhydrolysis activity? We discovered that the reverse reaction, hydrolysis of peracetic acid to acetic acid and hydrogen peroxide, occurs at nearly the diffusion limited rate. Since the reverse reaction cannot increase further, neither can the forward reaction. Consistent with this prediction, two variants with additional amino acid substitutions showed 2-fold higher k(cat), but K(m) also increased so the specificity constant, k(cat)/K(m), remained similar. Third, how does the L29P substitution change the esterase activity? Ester hydrolysis decreased for most esters (75-fold for ethyl acetate) but not for methyl esters. In contrast, L29P PFE catalyzed hydrolysis of epsilon-caprolactone five times more efficiently than wild-type PFE. Molecular modeling suggests that moving the carbonyl group closer to the active site blocks access for larger alcohol moieties but binds epsilon-caprolactone more tightly. These results are consistent with the natural function of perhydrolases being either hydrolysis of peroxycarboxylic acids or hydrolysis of lactones.


Asunto(s)
Proteínas Bacterianas/química , Hidrolasas de Éster Carboxílico/química , Peróxido de Hidrógeno/química , Pseudomonas fluorescens/enzimología , Ácido Acético/química , Sustitución de Aminoácidos/genética , Proteínas Bacterianas/genética , Biocatálisis , Caproatos/química , Hidrolasas de Éster Carboxílico/genética , Dominio Catalítico/genética , Cristalización , Cristalografía por Rayos X , Difusión , Ésteres/química , Hidrólisis , Lactonas/química , Leucina/genética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Prolina/genética , Pseudomonas fluorescens/genética
10.
Protein Expr Purif ; 46(2): 274-84, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16256365

RESUMEN

Acetyl xylan esterase A (AxeA) from Streptomyces lividans belongs to a large family of industrially relevant polysaccharide esterases. AxeA and its truncated form containing only the catalytically competent domain, AxeA(tr), catalyze both the deacetylation of xylan and the N-deacetylation of chitosan. This broad substrate specificity lends additional interest to their characterization and production. Here, we report three systems for extracellular production of AxeA(tr): secretion from the native host S. lividans with the native signal peptide, extracellular production in Escherichia coli with the native signal peptide, and in E. coli with the OmpA signal peptide. Over five to seven days of a shake flask culture, the native host S. lividans with the native signal peptide secreted AxeA(tr) into the extracellular medium in high yield (388 mg/L) with specific activity of 19 U/mg corresponding to a total of 7000 U/L. Over one day of shake flask culture, E. coli with the native secretion signal peptide produced 84-fold less in the extracellular medium (4.6 mg/L), but the specific activity was higher (100 U/mg) corresponding to a total of 460 U/L. A similar E. coli culture using the OmpA signal peptide, produced 10mg/L with a specific activity of 68 U/mg, corresponding to a total of 680 U/L. In 96-well microtiter plates, extracellular production with E. coli gave approximately 30 and approximately 86 microg/mL in S. lividans. Expression in S. lividans with the native signal peptide is best for high level production, while expression in E. coli using the OmpA secretion signal peptide is best for high-throughput expression and screening of variants in microtiter plate format.


Asunto(s)
Acetilesterasa/biosíntesis , Proteínas Bacterianas/biosíntesis , Escherichia coli , Proteínas Recombinantes/biosíntesis , Streptomyces lividans/enzimología , Acetilesterasa/química , Acetilesterasa/genética , Secuencia de Aminoácidos , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Expresión Génica/genética , Señales de Clasificación de Proteína/genética , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Eliminación de Secuencia , Streptomyces lividans/genética
11.
Trends Biotechnol ; 23(5): 231-7, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15866000

RESUMEN

Study of mutations that improve enzyme properties reveals that in many, but not all, cases closer mutations are more effective than distant ones. For enantioselectivity, substrate selectivity and new catalytic activity (catalytic promiscuity) closer mutations improved enzymes more effectively than distant ones. However, both close and distant mutations can improve activity, thermal stability and also probably stability toward organic solvents. Typical random mutagenesis methods, such as error-prone PCR, create greater numbers of distant mutations than close mutations because enzymes contain more amino acids distant from the active site than close to the active site. This suggests that instead of mutating the entire enzyme, focusing mutations near the substrate-binding site might dramatically increase the success rate in many directed evolution experiments.


Asunto(s)
Enzimas/química , Mutagénesis , Animales , Enzimas/genética , Humanos , Especificidad por Sustrato/genética
12.
Chem Biol ; 12(1): 45-54, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15664514

RESUMEN

Rational design of enzymes with improved properties, such as enantioselectivity, usually focuses mutations within the substrate binding site. On the other hand, directed evolution of enzymes usually targets the entire protein and discovers beneficial mutations far from the substrate binding site. In this paper, we propose an explanation for this discrepancy and show that a combined approach--random mutagenesis within the substrate binding site--is better. To increase the enantioselectivity (E) of a Pseudomonas fluorescens esterase (PFE) toward methyl 3-bromo-2-methylpropionate, we focused mutagenesis into the substrate binding site at Trp28, Val121, Phe198, and Val225. Five of the catalytically active mutants (13%) showed better enantioselectivity than wild-type PFE. The increases in enantioselectivity were higher (up to 5-fold, reaching E = 61) than with mutants identified by random mutagenesis of the entire enzyme.


Asunto(s)
Esterasas/genética , Esterasas/metabolismo , Pseudomonas fluorescens/enzimología , Sitios de Unión/genética , Catálisis , Cristalografía por Rayos X , Esterasas/química , Cinética , Modelos Moleculares , Conformación Molecular , Mutagénesis , Mutación , Propionatos/metabolismo , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...