Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Liver Int ; 43(9): 2026-2038, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37349903

RESUMEN

BACKGROUND & AIMS: PIEZO1 and TRPV4 are mechanically and osmotically regulated calcium-permeable channels. The aim of this study was to determine the relevance and relationship of these channels in the contractile tone of the hepatic portal vein, which experiences mechanical and osmotic variations as it delivers blood to the liver from the intestines, gallbladder, pancreas and spleen. METHODS: Wall tension was measured in freshly dissected portal veins from adult male mice, which were genetically unmodified or modified for either a non-disruptive tag in native PIEZO1 or endothelial-specific PIEZO1 deletion. Pharmacological agents were used to activate or inhibit PIEZO1, TRPV4 and associated pathways, including Yoda1 and Yoda2 for PIEZO1 and GSK1016790A for TRPV4 agonism, respectively. RESULTS: PIEZO1 activation leads to nitric oxide synthase- and endothelium-dependent relaxation of the portal vein. TRPV4 activation causes contraction, which is also endothelium-dependent but independent of nitric oxide synthase. The TRPV4-mediated contraction is suppressed by inhibitors of phospholipase A2 and cyclooxygenases and mimicked by prostaglandin E2 , suggesting mediation by arachidonic acid metabolism. TRPV4 antagonism inhibits the effect of agonising TRPV4 but not PIEZO1. Increased wall stretch and hypo-osmolality inhibit TRPV4 responses while lacking effects on or amplifying PIEZO1 responses. CONCLUSIONS: The portal vein contains independently functioning PIEZO1 channels and TRPV4 channels in the endothelium, the pharmacological activation of which leads to opposing effects of vessel relaxation (PIEZO1) and contraction (TRPV4). In mechanical and osmotic strain, the PIEZO1 mechanism dominates. Modulators of these channels could present important new opportunities for manipulating liver perfusion and regeneration in disease and surgical procedures.


Asunto(s)
Canales Iónicos , Óxido Nítrico , Vena Porta , Canales Catiónicos TRPV , Animales , Masculino , Ratones , Endotelio/metabolismo , Óxido Nítrico Sintasa/metabolismo , Presión Osmótica , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo , Vasodilatación , Canales Iónicos/genética , Canales Iónicos/metabolismo
2.
J Clin Invest ; 132(5)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35025768

RESUMEN

Piezo1 forms mechanically activated nonselective cation channels that contribute to endothelial response to fluid flow. Here we reveal an important role in the control of capillary density. Conditional endothelial cell-specific deletion of Piezo1 in adult mice depressed physical performance. Muscle microvascular endothelial cell apoptosis and capillary rarefaction were evident and sufficient to account for the effect on performance. There was selective upregulation of thrombospondin-2 (TSP2), an inducer of endothelial cell apoptosis, with no effect on TSP1, a related important player in muscle physiology. TSP2 was poorly expressed in muscle endothelial cells but robustly expressed in muscle pericytes, in which nitric oxide (NO) repressed the Tsp2 gene without an effect on Tsp1. In endothelial cells, Piezo1 was required for normal expression of endothelial NO synthase. The data suggest an endothelial cell-pericyte partnership of muscle in which endothelial Piezo1 senses blood flow to sustain capillary density and thereby maintain physical capability.


Asunto(s)
Células Endoteliales , Canales Iónicos , Condicionamiento Físico Animal , Animales , Capilares/metabolismo , Células Endoteliales/metabolismo , Canales Iónicos/genética , Canales Iónicos/metabolismo , Ratones , Músculos , Pericitos/metabolismo , Condicionamiento Físico Animal/fisiología
3.
Cochrane Database Syst Rev ; 12: CD013505, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31845767

RESUMEN

BACKGROUND: Polycystic ovary syndrome (PCOS) is characterised by infrequent or absent ovulation, and high levels of androgens and insulin (hyperinsulinaemia). Hyperinsulinaemia occurs secondary to insulin resistance and is associated with an increased biochemical risk profile for cardiovascular disease and an increased prevalence of diabetes mellitus. Insulin-sensitising agents such as metformin may be effective in treating PCOS-related anovulation. This is an update of Morley 2017 and only includes studies on metformin. OBJECTIVES: To evaluate the effectiveness and safety of metformin in combination with or in comparison to clomiphene citrate (CC), letrozole and laparoscopic ovarian drilling (LOD) in improving reproductive outcomes and associated gastrointestinal side effects for women with PCOS undergoing ovulation induction. SEARCH METHODS: We searched the following databases from inception to December 2018: Cochrane Gynaecology and Fertility Group Specialised Register, CENTRAL, MEDLINE, Embase, PsycINFO and CINAHL. We searched registers of ongoing trials and reference lists from relevant studies. SELECTION CRITERIA: We included randomised controlled trials of metformin compared with placebo, no treatment, or in combination with or compared with CC, letrozole and LOD for women with PCOS subfertility. DATA COLLECTION AND ANALYSIS: Two review authors independently assessed studies for eligibility and bias. Primary outcomes were live birth rate and gastrointestinal adverse effects. Secondary outcomes included other pregnancy outcomes and ovulation. We combined data to calculate pooled odds ratios (ORs) and 95% confidence intervals (CIs). We assessed statistical heterogeneity using the I2 statistic and reported quality of the evidence for primary outcomes and reproductive outcomes using GRADE methodology. MAIN RESULTS: We included 41 studies (4552 women). Evidence quality ranged from very low to moderate based on GRADE assessment. Limitations were risk of bias (poor reporting of methodology and incomplete outcome data), imprecision and inconsistency. Metformin versus placebo or no treatment The evidence suggests that metformin may improve live birth rates compared with placebo (OR 1.59, 95% CI 1.00 to 2.51; I2 = 0%; 4 studies, 435 women; low-quality evidence). For a live birth rate of 19% following placebo, the live birth rate following metformin would be between 19% and 37%. The metformin group probably experiences more gastrointestinal side effects (OR 4.00, 95% CI 2.63 to 6.09; I2 = 39%; 7 studies, 713 women; moderate-quality evidence). With placebo, the risk of gastrointestinal side effects is 10% whereas with metformin this risk is between 22% and 40%. There are probably higher rates of clinical pregnancy (OR 1.98, 95% CI 1.47 to 2.65; I2 = 30%; 11 studies, 1213 women; moderate-quality evidence). There may be higher rates of ovulation with metformin (OR 2.64, 95% CI 1.85 to 3.75; I2 = 61%; 13 studies, 684 women; low-quality evidence). We are uncertain about the effect on miscarriage rates (OR 1.08, 95% CI 0.50 to 2.35; I2 = 0%; 4 studies, 748 women; low-quality evidence). Metformin plus CC versus CC alone We are uncertain if metformin plus CC improves live birth rates compared to CC alone (OR 1.27, 95% CI 0.98 to 1.65; I2 = 28%; 10 studies, 1219 women; low-quality evidence), but gastrointestinal side effects are probably more common with combined therapy (OR 4.26, 95% CI 2.83 to 6.40; I2 = 8%; 6 studies, 852 women; moderate quality evidence). The live birth rate with CC alone is 24%, which may change to between 23% to 34% with combined therapy. With CC alone, the risk of gastrointestinal side effects is 9%, which increases to between 21% to 37% with combined therapy. The combined therapy group probably has higher rates of clinical pregnancy (OR 1.62, 95% CI 1.32 to 1.99; I2 = 31%; 19 studies, 1790 women; moderate-quality evidence). The combined group may have higher rates of ovulation (OR 1.65, 95% CI 1.35 to 2.03; I2 = 63%;21 studies, 1568 women; low-quality evidence). There was no clear evidence of an effect on miscarriage (OR 1.35, 95% CI 0.91 to 2.00; I2 = 0%; 10 studies, 1206 women; low-quality evidence). Metformin versus CC When all studies were combined, findings for live birth were inconclusive and inconsistent (OR 0.71, 95% CI 0.49 to 1.01; I2 = 86%; 5 studies, 741 women; very low-quality evidence). In subgroup analysis by obesity status, obese women had a lower birth rate in the metformin group (OR 0.30, 95% CI 0.17 to 0.52; 2 studies, 500 women), while the non-obese group showed a possible benefit from metformin, with high heterogeneity (OR 1.71, 95% CI 1.00 to 2.94; I2 = 78%, 3 studies, 241 women; very low-quality evidence). However, due to the very low quality of the evidence we cannot draw any conclusions. Among obese women taking metformin there may be lower rates of clinical pregnancy (OR 0.34, 95% CI 0.21 to 0.55; I2 = 0%; 2 studies, 500 women; low-quality evidence) and ovulation (OR 0.29, 95% CI 0.20 to 0.43; I2 = 0%; 2 studies, 500 women; low-quality evidence) while among non-obese women, the metformin group may have more pregnancies (OR 1.56, 95% CI 1.06 to 2.29; I2 = 26%; 6 studies, 530 women; low-quality evidence) and no clear difference in ovulation rates (OR 0.80, 95% CI 0.52 to 1.25; I2 = 0%; 5 studies, 352 women; low-quality evidence). We are uncertain whether there is a difference in miscarriage rates between the groups (overall: OR 0.92, 95% CI 0.51 to 1.66; I2 = 36%; 6 studies, 781 women; low-quality evidence) and no studies reported gastrointestinal side effects. AUTHORS' CONCLUSIONS: Our updated review suggests that metformin may be beneficial over placebo for live birth however, more women probably experience gastrointestinal side effects. We are uncertain if metformin plus CC improves live birth rates compared to CC alone, but gastrointestinal side effects are probably increased with combined therapy. When metformin was compared with CC, data for live birth were inconclusive, and the findings were limited by lack of evidence. Results differed by body mass index (BMI), emphasising the importance of stratifying results by BMI. No studies reported gastrointestinal side effects in this comparison. Due to the low quality of the evidence, we are uncertain of the effect of metformin on miscarriage in all three comparisons.


Asunto(s)
Metformina/uso terapéutico , Inducción de la Ovulación/métodos , Síndrome del Ovario Poliquístico/complicaciones , Aborto Espontáneo , Tasa de Natalidad , Índice de Masa Corporal , Clomifeno/uso terapéutico , Femenino , Fármacos para la Fertilidad Femenina/uso terapéutico , Humanos , Infertilidad Femenina/terapia , Ovario/cirugía , Embarazo , Resultado del Embarazo , Índice de Embarazo , Ensayos Clínicos Controlados Aleatorios como Asunto
4.
Cochrane Database Syst Rev ; 11: CD003053, 2017 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-29183107

RESUMEN

BACKGROUND: Polycystic ovary syndrome (PCOS) is characterised by infrequent or absent ovulation, and high levels of androgens and insulin (hyperinsulinaemia). Hyperinsulinaemia occurs secondary to insulin resistance and is associated with increased risk of cardiovascular disease and diabetes mellitus. Insulin-sensitising agents such as metformin may be effective in treating PCOS-related anovulation. OBJECTIVES: To evaluate the effectiveness and safety of insulin-sensitising drugs in improving reproductive and metabolic outcomes for women with PCOS undergoing ovulation induction. SEARCH METHODS: We searched the following databases from inception to January 2017: Cochrane Gynaecology and Fertility Group Specialised Register, CENTRAL, MEDLINE, Embase, PsycINFO and CINAHL. We searched registers of ongoing trials and reference lists from relevant studies. SELECTION CRITERIA: We included randomised controlled trials of insulin-sensitising drugs compared with placebo, no treatment, or an ovulation-induction agent for women with oligo and anovulatory PCOS. DATA COLLECTION AND ANALYSIS: Two review authors independently assessed studies for eligibility and bias. Primary outcomes were live birth rate and gastrointestinal adverse effects. Secondary outcomes included other pregnancy outcomes, menstrual frequency and metabolic effects. We combined data to calculate pooled odds ratios (ORs) and 95% confidence intervals (CIs). We assessed statistical heterogeneity using the I2 statistic and reported quality of the evidence for primary outcomes using GRADE methodology. MAIN RESULTS: We assessed the interventions metformin, clomiphene citrate, metformin plus clomiphene citrate, D-chiro-inositol, rosiglitazone and pioglitazone. We compared these with each other, placebo or no treatment. We included 48 studies (4451 women), 42 of which investigated metformin (4024 women). Evidence quality ranged from very low to moderate. Limitations were risk of bias (poor reporting of methodology and incomplete outcome data), imprecision and inconsistency. Metformin versus placebo or no treatmentThe evidence suggests that metformin may improve live birth rates compared with placebo (OR 1.59, 95% CI 1.00 to 2.51, 4 studies, 435 women, I2 = 0%, low-quality evidence). The metformin group experienced more gastrointestinal side effects (OR 4.76, 95% CI 3.06 to 7.41, 7 studies, 670 women, I2 = 61%, moderate-quality evidence) but had higher rates of clinical pregnancy (OR 1.93, 95% CI 1.42 to 2.64, 9 studies, 1027 women, I2 = 43%, moderate-quality evidence), ovulation (OR 2.55, 95% CI 1.81 to 3.59, 14 studies, 701 women, I2 = 58%, moderate-quality evidence) and menstrual frequency (OR 1.72, 95% CI 1.14 to 2.61, 7 studies, 427 women, I2 = 54%, low-quality evidence). There was no clear evidence of a difference in miscarriage rates (OR 1.08, 95% CI 0.50 to 2.35, 4 studies, 748 women, I2 = 0%, low-quality evidence). Metformin plus clomiphene citrate versus clomiphene citrate alone There was no conclusive evidence of a difference between the groups in live birth rates (OR 1.21, 95% CI 0.92 to 1.59, 9 studies, 1079 women, I2 = 20%, low-quality evidence), but gastrointestinal side effects were more common with combined therapy (OR 3.97, 95% CI 2.59 to 6.08, 3 studies, 591 women, I2 = 47%, moderate-quality evidence). However, the combined therapy group had higher rates of clinical pregnancy (OR 1.59, 95% CI 1.27 to 1.99, 16 studies, 1529 women, I2 = 33%, moderate-quality evidence) and ovulation (OR 1.57, 95% CI 1.28 to 1.92, 21 studies, 1624 women, I2 = 64%, moderate-quality evidence). There was a statistically significant difference in miscarriage rate per woman, with higher rates in the combined therapy group (OR 1.59, 95% CI 1.03 to 2.46, 9 studies, 1096 women, I2 = 0%, low-quality evidence) but this is of uncertain clinical significance due to low-quality evidence, and no clear difference between groups when we analysed miscarriage per pregnancy (OR 1.30, 95% CI 0.80 to 2.12, 8 studies; 400 pregnancies, I2 = 0%, low-quality evidence). Metformin versus clomiphene citrateWhen all studies were combined, findings for live birth were inconclusive and inconsistent (OR 0.71, 95% CI 0.49 to 1.01, 5 studies, 741 women, I2 = 86%, very low-quality evidence). In subgroup analysis by obesity status, obese women had a lower birth rate in the metformin group (OR 0.30, 95% CI 0.17 to 0.52, 2 studies, 500 women, I2 = 0%, very low-quality evidence), while data from the non-obese group showed a possible benefit from metformin, with high heterogeneity (OR 1.71, 95% CI 1.00 to 2.94, 3 studies, 241 women, I2 = 78%, very low-quality evidence). Similarly, among obese women taking metformin there were lower rates of clinical pregnancy (OR 0.34, 95% CI 0.21 to 0.55, 2 studies, 500 women, I2 = 0%, very low-quality evidence) and ovulation (OR 0.29, 95% CI 0.20 to 0.43 2 studies, 500 women, I2 = 0%, low-quality evidence) while among non-obese women, the metformin group had more pregnancies (OR 1.56, 95% CI 1.05 to 2.33, 5 studies, 490 women, I2 = 41%, very low-quality evidence) and no clear difference in ovulation rates (OR 0.81, 95% CI 0.51 to 1.28, 4 studies, 312 women, low-quality evidence, I2=0%). There was no clear evidence of a difference in miscarriage rates (overall: OR 0.92, 95% CI 0.50 to 1.67, 5 studies, 741 women, I2 = 52%, very low-quality evidence). D-chiro-inositol (2 studies), rosiglitazone (1 study) or pioglitazone (1 study) versus placebo or no treatmentWe were unable to draw conclusions regarding other insulin-sensitising drugs as no studies reported primary outcomes. AUTHORS' CONCLUSIONS: Our updated review suggests that metformin alone may be beneficial over placebo for live birth, although the evidence quality was low. When metformin was compared with clomiphene citrate, data for live birth were inconclusive, and our findings were limited by lack of evidence. Results differed by body mass index (BMI), emphasising the importance of stratifying results by BMI. An improvement in clinical pregnancy and ovulation suggests that clomiphene citrate remains preferable to metformin for ovulation induction in obese women with PCOS.An improved clinical pregnancy and ovulation rate with metformin and clomiphene citrate versus clomiphene citrate alone suggests that combined therapy may be useful although we do not know whether this translates into increased live births. Women taking metformin alone or with combined therapy should be advised that there is no evidence of increased miscarriages, but gastrointestinal side effects are more likely.


Asunto(s)
Anovulación/tratamiento farmacológico , Hipoglucemiantes/uso terapéutico , Infertilidad Femenina/tratamiento farmacológico , Resistencia a la Insulina , Nacimiento Vivo , Síndrome del Ovario Poliquístico/complicaciones , Aborto Espontáneo/epidemiología , Clomifeno/uso terapéutico , Femenino , Humanos , Hipoglucemiantes/efectos adversos , Inositol/uso terapéutico , Metformina/efectos adversos , Metformina/uso terapéutico , Inducción de la Ovulación/estadística & datos numéricos , Pioglitazona , Embarazo , Índice de Embarazo , Ensayos Clínicos Controlados Aleatorios como Asunto , Rosiglitazona , Tiazolidinedionas/uso terapéutico
5.
Hum Reprod Update ; 22(6): 687-708, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27511809

RESUMEN

BACKGROUND: Here we describe the consensus guideline methodology, summarise the evidence-based recommendations we provided to the World Health Organisation (WHO) for their consideration in the development of global guidance and present a narrative review on the management of anovulatory infertility in women with polycystic ovary syndrome (PCOS). OBJECTIVE AND RATIONALE: The aim of this paper was to present an evidence base for the management of anovulatory PCOS. SEARCH METHODS: The evidence to support providing recommendations involved a collaborative process for: (i) identification of priority questions and critical outcomes, (ii) retrieval of up-to-date evidence and exiting guidelines, (iii) assessment and synthesis of the evidence and (iv) the formulation of draft recommendations to be used for reaching consensus with a wide range of global stakeholders. For each draft recommendation, the methodologist evaluated the quality of the supporting evidence that was then graded as very low, low, moderate or high for consideration during consensus. OUTCOMES: Evidence was synthesized and we made recommendations across the definition of PCOS including hyperandrogenism, menstrual cycle regulation and ovarian assessment. Metabolic features and the impact of ethnicity were covered. Management includes lifestyle changes, bariatric surgery, pharmacotherapy (including clomiphene citrate (CC), aromatase inhibitors, metformin and gonadotropins), as well as laparoscopic surgery. In-vitro fertilization (IVF) was considered as were the risks of ovulation induction and of pregnancy in PCOS. Approximately 80% of women who suffer from anovulatory infertility have PCOS. Lifestyle intervention is recommended first in women who are obese largely on the basis of general health benefits. Bariatric surgery can be considered where the body mass index (BMI) is ≥35 kg/m2 and lifestyle therapy has failed. Carefully conducted and monitored pharmacological ovulation induction can achieve good cumulative pregnancy rates and multiple pregnancy rates can be minimized with adherence to recommended protocols. CC should be first-line pharmacotherapy for ovulation induction and letrozole can also be used as first-line therapy. Metformin alone has limited benefits in improving live birth rates. Gonadotropins and laparoscopic surgery can be used as second-line treatment. There is no clear evidence for efficacy of acupuncture or herbal mixtures in women with PCOS. For women with PCOS who fail lifestyle and ovulation induction therapy or have additional infertility factors, IVF can be used with the safer gonadotropin releasing hormone (GnRH) antagonist protocol. If a GnRH-agonist protocol is used, metformin as an adjunct may reduce the risk of ovarian hyperstimulation syndrome. Patients should be informed of the potential side effects of ovulation induction agents and of IVF on the foetus, and of the risks of multiple pregnancy. Increased risks for the mother during pregnancy and for the child, including the exacerbating impact of obesity on adverse outcomes, should also be discussed. WIDER IMPLICATIONS: This guidance generation and evidence-synthesis analysis has been conducted in a manner to be considered for global applicability for the safe administration of ovulation induction for anovulatory women with PCOS.


Asunto(s)
Anovulación/terapia , Consenso , Infertilidad Femenina/terapia , Síndrome del Ovario Poliquístico/terapia , Anovulación/complicaciones , Inhibidores de la Aromatasa/uso terapéutico , Clomifeno/uso terapéutico , Femenino , Fármacos para la Fertilidad Femenina/uso terapéutico , Fertilización In Vitro/efectos adversos , Gonadotropinas/uso terapéutico , Estilo de Vida Saludable , Humanos , Infertilidad Femenina/etiología , Letrozol , Metformina/uso terapéutico , Nitrilos/uso terapéutico , Obesidad/complicaciones , Obesidad/terapia , Síndrome de Hiperestimulación Ovárica/prevención & control , Ovulación , Inducción de la Ovulación/métodos , Síndrome del Ovario Poliquístico/complicaciones , Síndrome del Ovario Poliquístico/diagnóstico , Síndrome del Ovario Poliquístico/etnología , Guías de Práctica Clínica como Asunto , Embarazo , Receptores de Gonadotropina/uso terapéutico , Triazoles/uso terapéutico
6.
Cochrane Database Syst Rev ; (1): CD008611, 2013 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-23440828

RESUMEN

BACKGROUND: Recurrent miscarriage (RM) is defined as the loss of three or more consecutive pregnancies. Further research is required to understand the causes of RM, which remain unknown for many couples. Human chorionic gonadotrophin (hCG) is vital for maintaining the corpus luteum, but may have additional roles during implantation which support its use as a therapeutic agent for RM. OBJECTIVES: To determine the efficacy of hCG in preventing further miscarriage in women with a history of unexplained RM. SEARCH METHODS: We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (30 September 2012) and reference lists of retrieved studies. SELECTION CRITERIA: Randomised controlled trials investigating the efficacy of hCG versus placebo or no treatment in preventing RM. Quasi-randomised trials are included. Cluster-randomised trials and trials with a cross-over design are excluded. DATA COLLECTION AND ANALYSIS: Two review authors independently assessed trials for inclusion and assessed the methodological quality of each study. Date were extracted by two review authors and checked for accuracy. MAIN RESULTS: We included five studies (involving 596 women). Meta-analysis suggested a statistically significant reduction in miscarriage rate using hCG.The number of women needed to treat to prevent subsequent pregnancy loss was seven. However, when two studies of weaker methodological quality were removed, there was no longer a statistically significant benefit (risk ratio 0.74; 95% confidence interval 0.44 to 1.23). There were no documented adverse effects of using hCG. AUTHORS' CONCLUSIONS: The evidence supporting hCG supplementation to prevent RM remains equivocal. A well-designed randomised controlled trial of adequate power and methodological quality is required to determine whether hCG is beneficial in RM.


Asunto(s)
Aborto Habitual/prevención & control , Gonadotropina Coriónica/uso terapéutico , Tocolíticos/uso terapéutico , Femenino , Humanos , Embarazo , Ensayos Clínicos Controlados Aleatorios como Asunto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA