Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Int J Mol Sci ; 23(24)2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36555865

RESUMEN

ABC transporters are large membrane proteins sharing a complex architecture, which comprises two nucleotide-binding domains (NBDs) and two membrane-spanning domains (MSDs). These domains are susceptible to mutations affecting their folding and assembly. In the CFTR (ABCC7) protein, a groove has been highlighted in the MSD1 at the level of the membrane inner leaflet, containing both multiple mutations affecting folding and a binding site for pharmaco-chaperones that stabilize this region. This groove is also present in ABCB proteins, however it is covered by a short elbow helix, while in ABCC proteins it remains unprotected, due to a lower position of the elbow helix in the presence of the ABCC-specific lasso motif. Here, we identified a MSD1 second-site mutation located in the vicinity of the CFTR MSD1 groove that partially rescued the folding defect of cystic fibrosis causing mutations located within MSD1, while having no effect on the most frequent mutation, F508del, located within NBD1. A model of the mutated protein 3D structure suggests additional interaction between MSD1 and MSD2, strengthening the assembly at the level of the MSD intracellular loops. Altogether, these results provide insightful information in understanding key features of the folding and function of the CFTR protein in particular, and more generally, of type IV ABC transporters.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Humanos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Estructura Terciaria de Proteína , Fibrosis Quística/genética , Mutación , Membranas/metabolismo
2.
Biomolecules ; 12(10)2022 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-36291675

RESUMEN

AlphaFold2 (AF2) has created a breakthrough in biology by providing three-dimensional structure models for whole-proteome sequences, with unprecedented levels of accuracy. In addition, the AF2 pLDDT score, related to the model confidence, has been shown to provide a good measure of residue-wise disorder. Here, we combined AF2 predictions with pyHCA, a tool we previously developed to identify foldable segments and estimate their order/disorder ratio, from a single protein sequence. We focused our analysis on the AF2 predictions available for 21 reference proteomes (AFDB v1), in particular on their long foldable segments (>30 amino acids) that exhibit characteristics of soluble domains, as estimated by pyHCA. Among these segments, we provided a global analysis of those with very low pLDDT values along their entire length and compared their characteristics to those of segments with very high pLDDT values. We highlighted cases containing conditional order, as well as cases that could form well-folded structures but escape the AF2 prediction due to a shallow multiple sequence alignment and/or undocumented structure or fold. AF2 and pyHCA can therefore be advantageously combined to unravel cryptic structural features in whole proteomes and to refine predictions for different flavors of disorder.


Asunto(s)
Furilfuramida , Proteoma , Proteoma/química , Secuencia de Aminoácidos , Alineación de Secuencia , Aminoácidos/química , Conformación Proteica
3.
Cell Mol Life Sci ; 78(23): 7813-7829, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34714360

RESUMEN

Protein misfolding is involved in a large number of diseases, among which cystic fibrosis. Complex intra- and inter-domain folding defects associated with mutations in the cystic fibrosis transmembrane regulator (CFTR) gene, among which p.Phe508del (F508del), have recently become a therapeutical target. Clinically approved correctors such as VX-809, VX-661, and VX-445, rescue mutant protein. However, their binding sites and mechanisms of action are still incompletely understood. Blind docking onto the 3D structures of both the first membrane-spanning domain (MSD1) and the first nucleotide-binding domain (NBD1), followed by molecular dynamics simulations, revealed the presence of two potential VX-809 corrector binding sites which, when mutated, abrogated rescue. Network of amino acids in the lasso helix 2 and the intracellular loops ICL1 and ICL4 allosterically coupled MSD1 and NBD1. Corrector VX-445 also occupied two potential binding sites on MSD1 and NBD1, the latter being shared with VX-809. Binding of both correctors on MSD1 enhanced the allostery between MSD1 and NBD1, hence the increased efficacy of the corrector combination. These correctors improve both intra-domain folding by stabilizing fragile protein-lipid interfaces and inter-domain assembly via distant allosteric couplings. These results provide novel mechanistic insights into the rescue of misfolded proteins by small molecules.


Asunto(s)
Aminopiridinas/farmacología , Benzodioxoles/farmacología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Fibrosis Quística/tratamiento farmacológico , Mutación , Pliegue de Proteína/efectos de los fármacos , Pirazoles/farmacología , Piridinas/farmacología , Pirrolidinas/farmacología , Sitios de Unión , Agonistas de los Canales de Cloruro/farmacología , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Fibrosis Quística/patología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Quimioterapia Combinada , Células HEK293 , Humanos , Dominios Proteicos , Estructura Terciaria de Proteína
5.
Sci Rep ; 11(1): 6842, 2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33767236

RESUMEN

C407 is a compound that corrects the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein carrying the p.Phe508del (F508del) mutation. We investigated the corrector effect of c407 and its derivatives on F508del-CFTR protein. Molecular docking and dynamics simulations combined with site-directed mutagenesis suggested that c407 stabilizes the F508del-Nucleotide Binding Domain 1 (NBD1) during the co-translational folding process by occupying the position of the p.Phe1068 side chain located at the fourth intracellular loop (ICL4). After CFTR domains assembly, c407 occupies the position of the missing p.Phe508 side chain. C407 alone or in combination with the F508del-CFTR corrector VX-809, increased CFTR activity in cell lines but not in primary respiratory cells carrying the F508del mutation. A structure-based approach resulted in the synthesis of an extended c407 analog G1, designed to improve the interaction with ICL4. G1 significantly increased CFTR activity and response to VX-809 in primary nasal cells of F508del homozygous patients. Our data demonstrate that in-silico optimized c407 derivative G1 acts by a mechanism different from the reference VX-809 corrector and provide insights into its possible molecular mode of action. These results pave the way for novel strategies aiming to optimize the flawed ICL4-NBD1 interface.


Asunto(s)
Bronquios/efectos de los fármacos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/tratamiento farmacológico , Homocigoto , Cavidad Nasal/efectos de los fármacos , Ácidos Fosfínicos/química , Ácidos Fosfínicos/farmacología , Bronquios/metabolismo , Bronquios/patología , Células Cultivadas , Fibrosis Quística/genética , Fibrosis Quística/patología , Humanos , Simulación del Acoplamiento Molecular , Mutación , Cavidad Nasal/metabolismo , Cavidad Nasal/patología
6.
Front Pharmacol ; 11: 295, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32256364

RESUMEN

Understanding the functional consequence of rare cystic fibrosis (CF) mutations is mandatory for the adoption of precision therapeutic approaches for CF. Here we studied the effect of the very rare CF mutation, W361R, on CFTR processing and function. We applied western blot, patch clamp and pharmacological modulators of CFTR to study the maturation and ion transport properties of pEGFP-WT and mutant CFTR constructs, W361R, F508del and L69H-CFTR, expressed in HEK293 cells. Structural analyses were also performed to study the molecular environment of the W361 residue. Western blot showed that W361R-CFTR was not efficiently processed to a mature band C, similar to F508del CFTR, but unlike F508del CFTR, it did exhibit significant transport activity at the cell surface in response to cAMP agonists. Importantly, W361R-CFTR also responded well to CFTR modulators: its maturation defect was efficiently corrected by VX-809 treatment and its channel activity further potentiated by VX-770. Based on these results, we postulate that W361R is a novel class-2 CF mutation that causes abnormal protein maturation which can be corrected by VX-809, and additionally potentiated by VX-770, two FDA-approved small molecules. At the structural level, W361 is located within a class-2 CF mutation hotspot that includes other mutations that induce variable disease severity. Analysis of the 3D structure of CFTR within a lipid environment indicated that W361, together with other mutations located in this hotspot, is at the edge of a groove which stably accommodates lipid acyl chains. We suggest this lipid environment impacts CFTR folding, maturation and response to CFTR modulators.

7.
Eur J Med Chem ; 190: 112116, 2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-32078860

RESUMEN

Recent evidence shows that combination of correctors and potentiators, such as the drug ivacaftor (VX-770), can significantly restore the functional expression of mutated Cystic Fibrosis Transmembrane conductance Regulator (CFTR), an anion channel which is mutated in cystic fibrosis (CF). The success of these combinatorial therapies highlights the necessity of identifying a broad panel of specific binding mode modulators, occupying several distinct binding sites at structural level. Here, we identified two small molecules, SBC040 and SBC219, which are two efficient cAMP-independent potentiators, acting at low concentration of forskolin with EC50 close to 1 µM and in a synergic way with the drug VX-770 on several CFTR mutants of classes II and III. Molecular dynamics simulations suggested potential SBC binding sites at the vicinity of ATP-binding sites, distinct from those currently proposed for VX-770, outlining SBC molecules as members of a new family of potentiators.


Asunto(s)
Benzamidas/farmacología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Purinas/farmacología , Aminofenoles/farmacología , Benzamidas/síntesis química , Benzamidas/metabolismo , Sitios de Unión , Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Sinergismo Farmacológico , Células HeLa , Humanos , Simulación del Acoplamiento Molecular , Mutación , Unión Proteica , Purinas/síntesis química , Purinas/metabolismo , Quinolonas/farmacología
8.
Biochimie ; 167: 68-80, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31525399

RESUMEN

Hydrophobic clusters, as defined by Hydrophobic Cluster Analysis (HCA), are conditioned binary patterns, made of hydrophobic and non-hydrophobic positions, whose limits fit well those of regular secondary structures. They were proved to be useful for predicting secondary structures in proteins from the only information of a single amino acid sequence and have permitted to assess, in a comprehensive way, the leading role of binary patterns in secondary structure preference towards a particular state. Here, we considered the available experimental 3D structures of protein globular domains to enlarge our previously reported hydrophobic cluster database (HCDB), almost doubling the number of hydrophobic cluster species (each species being defined by a unique binary pattern) that represent the most frequent structural bricks encountered within protein globular domains. We then used this updated HCDB to show that the hydrophobic amino acids of discordant clusters, i.e. those less abundant clusters for which the observed secondary structure is in disagreement with the binary pattern preference of the species to which they belong, are more exposed to solvent and are more involved in protein interfaces than the hydrophobic amino acids of concordant clusters. As amino acid composition differs between concordant/discordant clusters, considering binary patterns may be used to gain novel insights into key features of protein globular domain cores and surfaces. It can also provide useful information on possible conformational plasticity, including disorder to order transitions.


Asunto(s)
Aminoácidos/química , Estructura Secundaria de Proteína , Proteínas/química , Secuencia de Aminoácidos , Análisis por Conglomerados , Bases de Datos como Asunto , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Pliegue de Proteína
9.
Proteomics ; 18(21-22): e1800054, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30299594

RESUMEN

Hydrophobic cluster analysis (HCA) is an original approach for protein sequence analysis, which provides access to the foldable repertoire of the protein universe, including yet unannotated protein segments ("dark proteome"). Foldable segments correspond to ordered regions, as well as to intrinsically disordered regions (IDRs) undergoing disorder to order transitions. In this review, how HCA can be used to give insight into this last category of foldable segments is illustrated, with examples matching known 3D structures. After reviewing the HCA principles, examples of short foldable segments are given, which often contain short linear motifs, typically matching hydrophobic clusters. These segments become ordered upon contact with partners, with secondary structure preferences generally corresponding to those observed in the 3D structures within the complexes. Such small foldable segments are sometimes larger than the segments of known 3D structures, including flanking hydrophobic clusters that may be critical for interaction specificity or regulation, as well as intervening sequences allowing fuzziness. Cases of larger conditionally disordered domains are also presented, with lower density in hydrophobic clusters than well-folded globular domains or with exposed hydrophobic patches, which are stabilized by interaction with partners.


Asunto(s)
Análisis por Conglomerados , Análisis de Secuencia de Proteína/métodos , Interacciones Hidrofóbicas e Hidrofílicas , Estructura Secundaria de Proteína
10.
Cell Mol Life Sci ; 75(20): 3829-3855, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29779042

RESUMEN

Cryo-electron microscopy (cryo-EM) has recently provided invaluable experimental data about the full-length cystic fibrosis transmembrane conductance regulator (CFTR) 3D structure. However, this experimental information deals with inactive states of the channel, either in an apo, quiescent conformation, in which nucleotide-binding domains (NBDs) are widely separated or in an ATP-bound, yet closed conformation. Here, we show that 3D structure models of the open and closed forms of the channel, now further supported by metadynamics simulations and by comparison with the cryo-EM data, could be used to gain some insights into critical features of the conformational transition toward active CFTR forms. These critical elements lie within membrane-spanning domains but also within NBD1 and the N-terminal extension, in which conformational plasticity is predicted to occur to help the interaction with filamin, one of the CFTR cellular partners.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Modelos Moleculares , Secuencia de Aminoácidos , Animales , Microscopía por Crioelectrón , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Humanos , Dominios Proteicos , Estructura Terciaria de Proteína , Alineación de Secuencia
11.
Hum Mutat ; 39(4): 506-514, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29271547

RESUMEN

Molecules correcting the trafficking (correctors) and gating defects (potentiators) of the cystic fibrosis causing mutation c.1521_1523delCTT (p.Phe508del) begin to be a useful treatment for CF patients bearing p.Phe508del. This mutation has been identified in different genetic contexts, alone or in combination with variants in cis. Until now, 21 exonic variants in cis of p.Phe508del have been identified, albeit at a low frequency. The aim of this study was to evaluate their impact on the efficacy of CFTR-directed corrector/potentiator therapy (Orkambi). The analysis by minigene showed that two out of 15 cis variants tested increased exon skipping (c.609C > T and c.2770G > A). Four cis variants were studied functionally in the absence of p.Phe508del, one of which was found to be deleterious for protein maturation c.1399C > T (p.Leu467Phe). In the presence of p.Phe508del, this variant was the only to prevent the response to Orkambi treatment. This study showed that some patients carrying p.Phe508del complex alleles are predicted to poorly respond to corrector/potentiator treatments. Our results underline the importance to validate treatment efficacy in the context of complex alleles.


Asunto(s)
Aminofenoles/uso terapéutico , Aminopiridinas/uso terapéutico , Benzodioxoles/uso terapéutico , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Quinolonas/uso terapéutico , Alelos , Combinación de Medicamentos , Humanos , Mutación , Fenilalanina/genética
12.
Curr Opin Pharmacol ; 34: 112-118, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-29096277

RESUMEN

Development of Cystic Fibrosis Transmembrane conductance Regulator (CFTR) modulators, targeting the root cause of cystic fibrosis (CF), represents a challenge in the era of personalized medicine, as CFTR mutations lead to a variety of phenotypes, which likely require different, specific treatments. CF drug development is also complicated by the need to preserve the right balance between stability and flexibility, required for optimal function of the CFTR protein. In this review, we highlight how structural data can be exploited in this context to understand the molecular mechanisms of disease-associated mutations, to characterize the mechanisms of action of known modulators and to rationalize the search for novel, specific compounds.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Fibrosis Quística/tratamiento farmacológico , Animales , Sitios de Unión , Simulación por Computador , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Diseño de Fármacos , Humanos
13.
Cell Mol Life Sci ; 74(1): 3-22, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27717958

RESUMEN

The cystic fibrosis transmembrane conductance regulator (CFTR) protein is a member of the ATP-binding cassette (ABC) transporter superfamily that functions as an ATP-gated channel. Considerable progress has been made over the last years in the understanding of the molecular basis of the CFTR functions, as well as dysfunctions causing the common genetic disease cystic fibrosis (CF). This review provides a global overview of the theoretical studies that have been performed so far, especially molecular modelling and molecular dynamics (MD) simulations. A special emphasis is placed on the CFTR-specific evolution of an ABC transporter framework towards a channel function, as well as on the understanding of the effects of disease-causing mutations and their specific modulation. This in silico work should help structure-based drug discovery and design, with a view to develop CFTR-specific pharmacotherapeutic approaches for the treatment of CF in the context of precision medicine.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Fibrosis Quística/metabolismo , Animales , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/efectos de los fármacos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Diseño de Fármacos , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Mutación , Conformación Proteica
14.
Proteins ; 84(5): 624-38, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26868538

RESUMEN

Several studies have highlighted the leading role of the sequence periodicity of polar and nonpolar amino acids (binary patterns) in the formation of regular secondary structures (RSS). However, these were based on the analysis of only a few simple cases, with no direct mean to correlate binary patterns with the limits of RSS. Here, HCA-derived hydrophobic clusters (HC) which are conditioned binary patterns whose positions fit well those of RSS, were considered. All the HC types, defined by unique binary patterns, which were commonly observed in three-dimensional (3D) structures of globular domains, were analyzed. The 180 HC types with preferences for either α-helices or ß-strands distinctly contain basic binary units typical of these RSS. Therefore a general trend supporting the "binary pattern preference" assumption was observed. HC for which observed RSS are in disagreement with their expected behavior (discordant HC) were also examined. They were separated in HC types with moderate preferences for RSS, having "weak" binary patterns and versatile RSS and HC types with high preferences for RSS, having "strong" binary patterns and then displaying nonpolar amino acids at the protein surface. It was shown that in both cases, discordant HC could be distinguished from concordant ones by well-differentiated amino acid compositions. The obtained results could, thus, help to complement the currently available methods for the accurate prediction of secondary structures in proteins from the only information of a single amino acid sequence. This can be especially useful for characterizing orphan sequences and for assisting protein engineering and design.


Asunto(s)
Aminoácidos/química , Estructura Secundaria de Proteína , Proteínas/química , Secuencia de Aminoácidos , Bases de Datos de Proteínas , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares
15.
Cell Mol Life Sci ; 72(7): 1377-403, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25287046

RESUMEN

In absence of experimental 3D structures, several homology models, based on ABC exporter 3D structures, have provided significant insights into the molecular mechanisms underlying the function of the cystic fibrosis transmembrane conductance regulator (CFTR) protein, a chloride channel whose defects are associated with cystic fibrosis (CF). Until now, these models, however, did not furnished much insights into the continuous way that ions could follow from the cytosol to the extracellular milieu in the open form of the channel. Here, we have built a refined model of CFTR, based on the outward-facing Sav1866 experimental 3D structure and integrating the evolutionary and structural information available today. Molecular dynamics simulations revealed significant conformational changes, resulting in a full-open channel, accessible from the cytosol through lateral tunnels displayed in the long intracellular loops (ICLs). At the same time, the region of nucleotide-binding domain 1 in contact with one of the ICLs and carrying amino acid F508, the deletion of which is the most common CF-causing mutation, was found to adopt an alternative but stable position. Then, in a second step, this first stable full-open conformation evolved toward another stable state, in which only a limited displacement of the upper part of the transmembrane helices leads to a closure of the channel, in a conformation very close to that adopted by the Atm1 ABC exporter, in an inward-facing conformation. These models, supported by experimental data, provide significant new insights into the CFTR structure-function relationships and into the possible impact of CF-causing mutations.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Simulación de Dinámica Molecular , Proteínas Mutantes/química , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Secuencia de Aminoácidos , Aminoácidos/química , Aminoácidos/genética , Animales , Sitios de Unión/genética , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Citoplasma/metabolismo , Humanos , Datos de Secuencia Molecular , Proteínas Mutantes/genética , Mutación Missense , Homología de Secuencia de Aminoácido
16.
Hum Mutat ; 34(10): 1371-80, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23784628

RESUMEN

Ferroportin (SLC40A1) is the only known iron exporter in mammals and is considered a key coordinator of the iron balance between intracellular and systemic iron homeostasis. However, the structural organization of ferroportin in the lipid bilayer remains controversial and very little is known about the mechanism underlying iron egress. In the present study, we have developed an approach based on comparative modeling, which has led to the construction of a model of the three-dimensional (3D) structure of ferroportin by homology to the crystal structure of a Major Facilitator Superfamily member (EmrD). This model predicts atomic details for the organization of ferroportin transmembrane helices and is in agreement with our current understanding of the ferroportin function and its interaction with hepcidin. Using in vitro experiments, we demonstrate that this model can be used to identify novel critical amino acids. In particular, we show that the tryptophan residue 42 (p.Trp42), which is localized within the extracellular end of the ferroportin pore, is likely involved in both the iron export function and in the mechanism of inhibition by hepcidin. Thus, our 3D model provides a new perspective for understanding the molecular basis of ferroportin functions and dysfunctions.


Asunto(s)
Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/genética , Hemocromatosis/genética , Sustitución de Aminoácidos , Sitios de Unión , Proteínas de Transporte de Catión/metabolismo , Línea Celular , Codón , Hepcidinas/química , Hepcidinas/metabolismo , Humanos , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica , Reproducibilidad de los Resultados , Relación Estructura-Actividad
17.
J Cyst Fibros ; 12(6): 737-45, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23478129

RESUMEN

BACKGROUND: CFTR is the only ABC transporter functioning as a chloride (Cl(-)) channel. We studied molecular determinants, which might distinguish CFTR from standard ABC transporters, and focused on the interface formed by the intracellular loops from the membrane spanning domains. METHODS: Residues from ICL2 and ICL4 in close proximity were targeted, and their involvement in the functioning of CFTR was studied by whole cell patch clamp recording. RESULTS: We identified 2 pairs of amino acids, at the extremity of the bundle formed by the four intracellular loops, whose mutation i) decreases the Cl(-) current of CFTR (couple E267-K1060) or ii) increases it with a change of the electrophysiological signature (couple S263-V1056). CONCLUSIONS: These results highlight the critical role of these ICL residues in the assembly of the different domains and/or in the Cl(-) permeation pathway of CFTR.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/fisiología , Conformación Proteica , Transportadoras de Casetes de Unión a ATP/metabolismo , Secuencias de Aminoácidos , Western Blotting , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Humanos , Modelos Moleculares , Técnicas de Placa-Clamp , Estructura Terciaria de Proteína , Relación Estructura-Actividad
18.
Biochimie ; 94(9): 2006-12, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22664638

RESUMEN

Polycomb complexes function as enforcers of epigenetically repressed state, balanced by an antagonist state mediated by Trithorax. Using sensitive methods of sequence analysis, we show here that Polycomb-like proteins (PCLs) contain a tandem of intimately associated domains, which we named PWAPA and which is also present in ASH2L, a member of the Trithorax group. Polycomb-like proteins and ASH2L belong to the PCR2 and MLL histone methyltransferase complexes, respectively. A PWAPA cassette is also present in ATAC2, a component of the ATAC histone acetyltransferase complex. The recently solved structure of the PWAPA tandem of ASH2L has revealed that it consist in a PHD-like finger followed by a helix-winged-helix (WH) domain, able to bind DNA. The modeling of the 3D structure of the different members of the PWAPA family suggests that the PHD-like finger might be able, at least for some proteins of the family, to bind methylated marks on histones. The PWAPA PHD/WH cassette might thus be involved in the combined recognition of DNA and specific (perhaps methylation) mark(s) on histones, thereby allowing the recruitment of specific chromatin-modifying activities at these sites. The observations reported here should help to unravel the exact role played by the PWAPA cassette in the different proteins of the PWAPA family, and especially in the antagonistic activities of PcG and TrxG proteins.


Asunto(s)
Biología Computacional , ADN/metabolismo , Histonas/metabolismo , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Secuencia de Aminoácidos , Animales , ADN/genética , Histonas/genética , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína
19.
J Biol Chem ; 285(34): 26475-83, 2010 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-20558749

RESUMEN

In mammals, the majority of DNA double-strand breaks are processed by the nonhomologous end-joining (NHEJ) pathway, composed of seven factors: Ku70, Ku80, DNA-PKcs, Artemis, Xrcc4 (X4), DNA-ligase IV (L4), and Cernunnos/XLF. Cernunnos is part of the ligation complex, constituted by X4 and L4. To improve our knowledge on the structure and function of Cernunnos, we performed a systematic mutagenesis study on positions selected from an analysis of the recent three-dimensional structures of this factor. Ten of 27 screened mutants were nonfunctional in several DNA repair assays. Outside amino acids critical for the expression and stability of Cernunnos, we identified three amino acids (Arg(64), Leu(65), and Leu(115)) essential for the interaction with X4 and the proper function of Cernunnos. Docking the crystal structures of the two factors further validated this probable interaction surface of Cernunnos with X4.


Asunto(s)
Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Aminoácidos , Sitios de Unión , Simulación por Computador , Cristalografía por Rayos X , Reparación del ADN , Enzimas Reparadoras del ADN/química , Enzimas Reparadoras del ADN/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Humanos , Mutagénesis Sitio-Dirigida , Unión Proteica , Estructura Terciaria de Proteína
20.
J Biol Chem ; 285(29): 22132-40, 2010 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-20435887

RESUMEN

The cystic fibrosis transmembrane conductance regulator (CFTR) is a Cl(-) channel physiologically important in fluid-transporting epithelia and pathologically relevant in several human diseases. Here, we show that mutations in the C terminus of the first nucleotide binding domain comprising the latest beta strands (beta(c)5 and beta(c)6) influence the trafficking, channel activity, and pharmacology of CFTR. We mutated CFTR amino acids located in the beta(c)5-beta(c)6 hairpin, within the beta(c)5 strand (H620Q), within the beta-turn linking the two beta strands (E621G, G622D), as well as within (S623A, S624A) and at the extremity (G628R) of the beta(c)6 strand. Functional analysis reveals that the current density was largely reduced for G622D and G628R channels compared with wt CFTR, similar for E621G and S624A, but increased for H620Q and S623A. For G622D and G628R, the abnormal activity is likely due to a defective maturation process, as assessed by the augmented activity and mature C-band observed in the presence of the trafficking corrector miglustat. In addition, in presence of the CFTR activator benzo[c]quinolizinium, the CFTR current density compared with that of wt CFTR was abolished for G622D and G628R channels, but similar for H620Q, S623A, and S624A or slightly increased for E621G. Finally, G622D and G628R were activated by the CFTR agonists genistein, RP-107, and isobutylmethylxanthine. Our results identify the C terminus of the CFTR first nucleotide binding domain as an important molecular site for the trafficking of CFTR protein, for the control of CFTR channel gating, and for the pharmacological effect of a dual activity agent.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Activación del Canal Iónico , 1-Desoxinojirimicina/análogos & derivados , 1-Desoxinojirimicina/farmacología , Western Blotting , Línea Celular , Colforsina/farmacología , Humanos , Yoduros/metabolismo , Activación del Canal Iónico/efectos de los fármacos , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas/efectos de los fármacos , Quinolizinas/farmacología , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...