Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
2.
Nat Commun ; 14(1): 6613, 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37857599

RESUMEN

Exciton transport can be enhanced in the strong coupling regime where excitons hybridize with confined light modes to form polaritons. Because polaritons have group velocity, their propagation should be ballistic and long-ranged. However, experiments indicate that organic polaritons propagate in a diffusive manner and more slowly than their group velocity. Here, we resolve this controversy by means of molecular dynamics simulations of Rhodamine molecules in a Fabry-Pérot cavity. Our results suggest that polariton propagation is limited by the cavity lifetime and appears diffusive due to reversible population transfers between polaritonic states that propagate ballistically at their group velocity, and dark states that are stationary. Furthermore, because long-lived dark states transiently trap the excitation, propagation is observed on timescales beyond the intrinsic polariton lifetime. These insights not only help to better understand and interpret experimental observations, but also pave the way towards rational design of molecule-cavity systems for coherent exciton transport.

3.
Front Vet Sci ; 10: 1174560, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37808108

RESUMEN

Introduction: Ruminant production in the Black Sea basin (BSB) is critical for national economies and the subsistence of rural populations. Yet, zoonoses and transboundary animal diseases (TADs) are limiting and threatening the sector. To gain a more comprehensive understanding, this study characterizes key aspects of the ruminant sector in nine countries of the BSB, including Armenia, Azerbaijan, Belarus, Bulgaria, Georgia, Moldova, Romania, Türkiye, and Ukraine. Methods: We selected six priority ruminant diseases (anthrax, brucellosis, Crimean Congo haemorrhagic fever (CCHF), foot-and-mouth disease (FMD), lumpy skin disease (LSD), and peste des petits ruminants (PPR)) that are present or threaten to emerge in the region. Standardized questionnaires were completed by a network of focal points and supplemented with external sources. We examined country and ruminant-specific data such as demographics, economic importance, and value chains in each country. For disease-specific data, we analysed the sanitary status, management strategies, and temporal trends of the selected diseases. Results and discussion: The shift from a centrally planned to a market economy, following the collapse of the Soviet Union, restructured the ruminant sector. This sector played a critical role in rural livelihoods within the BSB. Yet, it faced significant challenges such as the low sustainability of pastoralism, technological limitations, and unregistered farms. Additionally, ruminant health was hindered by informal animal trade as a result of economic factors, insufficient support for the development of formal trade, and socio-cultural drivers. In the Caucasus and Türkiye, where diseases were present, improvements to ruminant health were driven by access to trading opportunities. Conversely, European countries, mostly disease-free, prioritized preventing disease incursion to avoid a high economic burden. While international initiatives for disease management are underway in the BSB, there is still a need for more effective local resource allocation and international partnerships to strengthen veterinary health capacity, protect animal health and improve ruminant production.

4.
Nat Chem ; 15(11): 1607-1615, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37563326

RESUMEN

The photoisomerization reaction of a fluorescent protein chromophore occurs on the ultrafast timescale. The structural dynamics that result from femtosecond optical excitation have contributions from vibrational and electronic processes and from reaction dynamics that involve the crossing through a conical intersection. The creation and progression of the ultrafast structural dynamics strongly depends on optical and molecular parameters. When using X-ray crystallography as a probe of ultrafast dynamics, the origin of the observed nuclear motions is not known. Now, high-resolution pump-probe X-ray crystallography reveals complex sub-ångström, ultrafast motions and hydrogen-bonding rearrangements in the active site of a fluorescent protein. However, we demonstrate that the measured motions are not part of the photoisomerization reaction but instead arise from impulsively driven coherent vibrational processes in the electronic ground state. A coherent-control experiment using a two-colour and two-pulse optical excitation strongly amplifies the X-ray crystallographic difference density, while it fully depletes the photoisomerization process. A coherent control mechanism was tested and confirmed the wave packets assignment.


Asunto(s)
Rodopsina , Vibración , Movimiento (Física) , Enlace de Hidrógeno
5.
J Phys Chem Lett ; 14(31): 7038-7044, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37524046

RESUMEN

Multiscale molecular modeling is utilized to predict optical absorption and circular dichroism spectra of two single-point mutants of the Fenna-Matthews-Olson photosynthetic pigment-protein complex. The modeling approach combines classical molecular dynamics simulations with structural refinement of photosynthetic pigments and calculations of their excited states in a polarizable protein environment. The only experimental input to the modeling protocol is the X-ray structure of the wild-type protein. The first-principles modeling reproduces changes in the experimental optical spectra of the considered mutants, Y16F and Q198V. Interestingly, the Q198V mutation has a negligible effect on the electronic properties of the targeted bacteriochlorophyll a pigment. Instead, the electronic properties of several other pigments respond to this mutation. The molecular modeling demonstrates that a single-point mutation can induce long-range effects on the protein structure, while extensive structural changes near a pigment do not necessarily lead to significant changes in the electronic properties of that pigment.


Asunto(s)
Complejos de Proteína Captadores de Luz , Proteínas del Complejo del Centro de Reacción Fotosintética , Complejos de Proteína Captadores de Luz/química , Proteínas Bacterianas/química , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Simulación de Dinámica Molecular , Mutación
6.
J Am Chem Soc ; 145(29): 15796-15808, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37418747

RESUMEN

Chromophore cis/trans photoisomerization is a fundamental process in chemistry and in the activation of many photosensitive proteins. A major task is understanding the effect of the protein environment on the efficiency and direction of this reaction compared to what is observed in the gas and solution phases. In this study, we set out to visualize the hula twist (HT) mechanism in a fluorescent protein, which is hypothesized to be the preferred mechanism in a spatially constrained binding pocket. We use a chlorine substituent to break the twofold symmetry of the embedded phenolic group of the chromophore and unambiguously identify the HT primary photoproduct. Through serial femtosecond crystallography, we then track the photoreaction from femtoseconds to the microsecond regime. We observe signals for the photoisomerization of the chromophore as early as 300 fs, obtaining the first experimental structural evidence of the HT mechanism in a protein on its femtosecond-to-picosecond timescale. We are then able to follow how chromophore isomerization and twisting lead to secondary structure rearrangements of the protein ß-barrel across the time window of our measurements.


Asunto(s)
Colorantes , Proteínas , Cristalografía , Estructura Secundaria de Proteína
7.
Leukemia ; 37(7): 1464-1473, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37202442

RESUMEN

Autoimmune hemolytic anemia (AIHA) and pure red cell aplasia (PRCA) are common complications of CLL. The optimal treatment of steroid refractory AIHA/PRCA is not well established. We conducted a multicenter study of ibrutinib and rituximab in patients with relapsed/refractory to steroids AIHA/PRCA and underlying CLL. Protocol included induction (ibrutinib 420 mg/day and rituximab, 8 weekly and 4 monthly infusions) and maintenance phase with ibrutinib alone until progression or unacceptable toxicity. Fifty patients were recruited (44-warm AIHA, 2-cold AIHA, 4-PRCA). After the induction 34 patients (74%) have achieved complete response, 10 (21.7%) partial response. Median time to hemoglobin normalization was 85 days. With regards to CLL response 9 (19%) patients have achieved CR, 2 (4%) patients-stabilization and 39 (78%)-PR. The median follow-up was 37.56 months. In AIHA group 2 patients had a relapse. Among 4 patients with PRCA 1 patient did not respond, and 1 patient had a relapse after CR, 2 remained in CR. The most common adverse events were neutropenia (62%), infections (72%), gastrointestinal complications (54%). In conclusion ibrutinib in combination with rituximab is an active second-line treatment option for patients with relapsed or refractory AIHA/PRCA and underlying CLL.


Asunto(s)
Anemia Hemolítica Autoinmune , Leucemia Linfocítica Crónica de Células B , Aplasia Pura de Células Rojas , Trombocitopenia , Humanos , Rituximab , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/complicaciones , Anemia Hemolítica Autoinmune/tratamiento farmacológico , Anemia Hemolítica Autoinmune/complicaciones , Esteroides , Recurrencia
8.
Mol Ther Nucleic Acids ; 32: 267-288, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37090419

RESUMEN

Here, we present DNA aptamers capable of specific binding to glial tumor cells in vitro, ex vivo, and in vivo for visualization diagnostics of central nervous system tumors. We selected the aptamers binding specifically to the postoperative human glial primary tumors and not to the healthy brain cells and meningioma, using a modified process of systematic evolution of ligands by exponential enrichment to cells; sequenced and analyzed ssDNA pools using bioinformatic tools and identified the best aptamers by their binding abilities; determined three-dimensional structures of lead aptamers (Gli-55 and Gli-233) with small-angle X-ray scattering and molecular modeling; isolated and identified molecular target proteins of the aptamers by mass spectrometry; the potential binding sites of Gli-233 to the target protein and the role of post-translational modifications were verified by molecular dynamics simulations. The anti-glioma aptamers Gli-233 and Gli-55 were used to detect circulating tumor cells in liquid biopsies. These aptamers were used for in situ, ex vivo tissue staining, histopathological analyses, and fluorescence-guided tumor and PET/CT tumor visualization in mice with xenotransplanted human astrocytoma. The aptamers did not show in vivo toxicity in the preclinical animal study. This study demonstrates the potential applications of aptamers for precise diagnostics and fluorescence-guided surgery of brain tumors.

10.
Cancers (Basel) ; 14(24)2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36551687

RESUMEN

Cancer is one of the major deadly diseases globally. The alarming rise in the mortality rate due to this disease attracks attention towards discovering potent anticancer agents to overcome its mortality rate. The discovery of novel and effective anticancer agents from natural sources has been the main point of interest in pharmaceutical research because of attractive natural therapeutic agents with an immense chemical diversity in species of animals, plants, and microorganisms. More than 60% of contemporary anticancer drugs, in one form or another, have originated from natural sources. Plants and microbial species are chosen based on their composition, ecology, phytochemical, and ethnopharmacological properties. Plants and their derivatives have played a significant role in producing effective anticancer agents. Some plant derivatives include vincristine, vinblastine, irinotecan, topotecan, etoposide, podophyllotoxin, and paclitaxel. Based on their particular activity, a number of other plant-derived bioactive compounds are in the clinical development phase against cancer, such as gimatecan, elomotecan, etc. Additionally, the conjugation of natural compounds with anti-cancerous drugs, or some polymeric carriers particularly targeted to epitopes on the site of interest to tumors, can generate effective targeted treatment therapies. Cognizance from such pharmaceutical research studies would yield alternative drug development strategies through natural sources which could be economical, more reliable, and safe to use.

11.
Pediatr Surg Int ; 39(1): 10, 2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36441276

RESUMEN

PURPOSE: Anorectoplasty and pull-through procedure can be performed with extensive mobilization or tension anastomosis, which can compromise bowel blood perfusion. We aimed to analyze the hypoxia biomarker values and histopathological findings in both conditions to correlate the occurrence of anal stenosis and defecation disorders in experimental models. METHODS: We created anorectal reconstruction models with impaired vascularization of the anorectum (group I) and tension anastomosis (group II) in rats. A third group of animals underwent sham operation (group III) and another as controls (group IV). Hypoxia biomarker values were assessed in all groups. The histopathological changes on the postoperative days 3 and 35, anal stenosis and defecation disorders on day 35 were compared. RESULTS: Hypoxia biomarker values confirmed postoperative ischemia in groups I-III compared to control. Group I and II rats had a similarly pronounced ischemia with histopathologic changes in the anorectum on the postoperative day 3 and accompanied by severe fibrosis on day 35. Compared to the sham operation, both groups showed defecation disorders with significant anal stenoses. CONCLUSION: Extensive rectal mobilization to about the same extent as tension anastomosis has a major impact on postoperative rectal ischemia, resulting in severe fibrotic changes in the anorectum and defecation disorders in the long term.


Asunto(s)
Malformaciones Anorrectales , Intestino Grueso , Animales , Ratas , Constricción Patológica , Anastomosis Quirúrgica , Malformaciones Anorrectales/cirugía , Hipoxia
12.
J Phys Chem Lett ; 13(27): 6259-6267, 2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35771724

RESUMEN

The strong light-matter coupling regime, in which excitations of materials hybridize with excitations of confined light modes into polaritons, holds great promise in various areas of science and technology. A key aspect for all applications of polaritonic chemistry is the relaxation into the lower polaritonic states. Polariton relaxation is speculated to involve two separate processes: vibrationally assisted scattering (VAS) and radiative pumping (RP), but the driving forces underlying these two mechanisms are not fully understood. To provide mechanistic insights, we performed multiscale molecular dynamics simulations of tetracene molecules strongly coupled to the confined light modes of an optical cavity. The results suggest that both mechanisms are driven by the same molecular vibrations that induce relaxation through nonadiabatic coupling between dark states and polaritonic states. Identifying these vibrational modes provides a rationale for enhanced relaxation into the lower polariton when the cavity detuning is resonant with specific vibrational transitions.

13.
J Phys Chem Lett ; 13(20): 4538-4542, 2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35576453

RESUMEN

Photoactivation of bacteriophytochrome involves a cis-trans photoisomerization of a biliverdin chromophore, but neither the precise sequence of events nor the direction of the isomerization is known. Here, we used nonadiabatic molecular dynamics simulations on the photosensory protein dimer to resolve the isomerization mechanism in atomic detail. In our simulations the photoisomerization of the D ring occurs in the counterclockwise direction. On a subpicosecond time scale, the photoexcited chromophore adopts a short-lived intermediate with a highly twisted configuration stabilized by an extended hydrogen-bonding network. Within tens of picoseconds, these hydrogen bonds break, allowing the chromophore to adopt a more planar configuration, which we assign to the early Lumi-R state. The isomerization process is completed via helix inversion of the biliverdin chromophore to form the late Lumi-R state. The mechanistic insights into the photoisomerization process are essential to understand how bacteriophytochrome has evolved to mediate photoactivation and to engineer this protein for new applications.


Asunto(s)
Biliverdina , Simulación de Dinámica Molecular , Proteínas Bacterianas/química , Biliverdina/química , Biliverdina/metabolismo , Enlace de Hidrógeno , Isomerismo
15.
Chemistry ; 28(12): e202104481, 2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35025110

RESUMEN

Aptamer selection against novel infections is a complicated and time-consuming approach. Synergy can be achieved by using computational methods together with experimental procedures. This study aims to develop a reliable methodology for a rational aptamer in silico et vitro design. The new approach combines multiple steps: (1) Molecular design, based on screening in a DNA aptamer library and directed mutagenesis to fit the protein tertiary structure; (2) 3D molecular modeling of the target; (3) Molecular docking of an aptamer with the protein; (4) Molecular dynamics (MD) simulations of the complexes; (5) Quantum-mechanical (QM) evaluation of the interactions between aptamer and target with further analysis; (6) Experimental verification at each cycle for structure and binding affinity by using small-angle X-ray scattering, cytometry, and fluorescence polarization. By using a new iterative design procedure, structure- and interaction-based drug design (SIBDD), a highly specific aptamer to the receptor-binding domain of the SARS-CoV-2 spike protein, was developed and validated. The SIBDD approach enhances speed of the high-affinity aptamers development from scratch, using a target protein structure. The method could be used to improve existing aptamers for stronger binding. This approach brings to an advanced level the development of novel affinity probes, functional nucleic acids. It offers a blueprint for the straightforward design of targeting molecules for new pathogen agents and emerging variants.


Asunto(s)
Aptámeros de Nucleótidos , COVID-19 , Aptámeros de Nucleótidos/química , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , SARS-CoV-2 , Técnica SELEX de Producción de Aptámeros , Glicoproteína de la Espiga del Coronavirus
16.
Mol Ther Nucleic Acids ; 25: 316-327, 2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34458013

RESUMEN

Aptamers are short, single-stranded DNA or RNA oligonucleotide molecules that function as synthetic analogs of antibodies and bind to a target molecule with high specificity. Aptamer affinity entirely depends on its tertiary structure and charge distribution. Therefore, length and structure optimization are essential for increasing aptamer specificity and affinity. Here, we present a general optimization procedure for finding the most populated atomistic structures of DNA aptamers. Based on the existed aptamer LC-18 for lung adenocarcinoma, a new truncated LC-18 (LC-18t) aptamer LC-18t was developed. A three-dimensional (3D) shape of LC-18t was reported based on small-angle X-ray scattering (SAXS) experiments and molecular modeling by fragment molecular orbital or molecular dynamic methods. Molecular simulations revealed an ensemble of possible aptamer conformations in solution that were in close agreement with measured SAXS data. The aptamer LC-18t had stronger binding to cancerous cells in lung tumor tissues and shared the binding site with the original larger aptamer. The suggested approach reveals 3D shapes of aptamers and helps in designing better affinity probes.

17.
Nat Commun ; 12(1): 4394, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34285211

RESUMEN

Bacterial phytochrome photoreceptors usually belong to two-component signaling systems which transmit environmental stimuli to a response regulator through a histidine kinase domain. Phytochromes switch between red light-absorbing and far-red light-absorbing states. Despite exhibiting extensive structural responses during this transition, the model bacteriophytochrome from Deinococcus radiodurans (DrBphP) lacks detectable kinase activity. Here, we resolve this long-standing conundrum by comparatively analyzing the interactions and output activities of DrBphP and a bacteriophytochrome from Agrobacterium fabrum (Agp1). Whereas Agp1 acts as a conventional histidine kinase, we identify DrBphP as a light-sensitive phosphatase. While Agp1 binds its cognate response regulator only transiently, DrBphP does so strongly, which is rationalized at the structural level. Our data pinpoint two key residues affecting the balance between kinase and phosphatase activities, which immediately bears on photoreception and two-component signaling. The opposing output activities in two highly similar bacteriophytochromes suggest the use of light-controllable histidine kinases and phosphatases for optogenetics.


Asunto(s)
Proteínas Bacterianas/metabolismo , Histidina Quinasa/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Fotorreceptores Microbianos/metabolismo , Transducción de Señal/efectos de la radiación , Agrobacterium/enzimología , Proteínas Bacterianas/ultraestructura , Deinococcus/enzimología , Histidina Quinasa/ultraestructura , Luz , Simulación de Dinámica Molecular , Monoéster Fosfórico Hidrolasas/ultraestructura , Fotorreceptores Microbianos/ultraestructura , Dominios Proteicos
20.
J Pediatr Urol ; 17(3): 335-337, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33865708

RESUMEN

The normal development of the glanular urethra is closely related to the normal development of the foreskin. A ventral deficit in the foreskin results with the failure to develop the septum glandis and frenulum, which also form the ventral wall of the glanular and subcoronal urethra. Here we present the anatomical modeling of the foreskin in order to obtain a mucosal collar for the reconstruction of the glanular hypospadias with the GFC technique (Glanular-Frenular-Collar), which can also be used for various purposes to reconstruct the urethra in hypospadias.


Asunto(s)
Hipospadias , Prepucio/cirugía , Humanos , Hipospadias/cirugía , Lactante , Masculino , Uretra/cirugía , Procedimientos Quirúrgicos Urológicos Masculinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...