Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cell Biol ; 221(9)2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-35938958

RESUMEN

The BRCA1-A complex contains matching lysine-63 ubiquitin (K63-Ub) binding and deubiquitylating activities. How these functionalities are coordinated to effectively respond to DNA damage remains unknown. We generated Brcc36 deubiquitylating enzyme (DUB) inactive mice to address this gap in knowledge in a physiologic system. DUB inactivation impaired BRCA1-A complex damage localization and repair activities while causing early lethality when combined with Brca2 mutation. Damage response dysfunction in DUB-inactive cells corresponded to increased K63-Ub on RAP80 and BRCC36. Chemical cross-linking coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) and cryogenic-electron microscopy (cryo-EM) analyses of isolated BRCA1-A complexes demonstrated the RAP80 ubiquitin interaction motifs are occupied by ubiquitin exclusively in the DUB-inactive complex, linking auto-inhibition by internal K63-Ub chains to loss of damage site ubiquitin recognition. These findings identify RAP80 and BRCC36 as autologous DUB substrates in the BRCA1-A complex, thus explaining the evolution of matching ubiquitin-binding and hydrolysis activities within a single macromolecular assembly.


Asunto(s)
Proteína BRCA1 , Daño del ADN , Proteínas de Unión al ADN , Enzimas Desubicuitinizantes , Chaperonas de Histonas , Animales , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Cromatografía Liquida , Reparación del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Enzimas Desubicuitinizantes/genética , Enzimas Desubicuitinizantes/metabolismo , Células HeLa , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Humanos , Ratones , Espectrometría de Masas en Tándem , Ubiquitina/metabolismo
2.
Nucleic Acids Res ; 50(5): 2765-2781, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35191499

RESUMEN

Recognition of mammalian mitochondrial promoters requires the concerted action of mitochondrial RNA polymerase (mtRNAP) and transcription initiation factors TFAM and TFB2M. In this work, we found that transcript slippage results in heterogeneity of the human mitochondrial transcripts in vivo and in vitro. This allowed us to correctly interpret the RNAseq data, identify the bona fide transcription start sites (TSS), and assign mitochondrial promoters for > 50% of mammalian species and some other vertebrates. The divergent structure of the mammalian promoters reveals previously unappreciated aspects of mtDNA evolution. The correct assignment of TSS also enabled us to establish the precise register of the DNA in the initiation complex and permitted investigation of the sequence-specific protein-DNA interactions. We determined the molecular basis of promoter recognition by mtRNAP and TFB2M, which cooperatively recognize bases near TSS in a species-specific manner. Our findings reveal a role of mitochondrial transcription machinery in mitonuclear coevolution and speciation.


Asunto(s)
Mitocondrias/genética , Transcripción Genética , Animales , ADN Mitocondrial/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Humanos , Mamíferos/genética , Mamíferos/metabolismo , Mitocondrias/enzimología , Proteínas Mitocondriales/metabolismo , Factores de Transcripción/química , Factores de Transcripción/genética , Sitio de Iniciación de la Transcripción
3.
Cell ; 171(5): 1072-1081.e10, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-29149603

RESUMEN

Transcription in human mitochondria is driven by a single-subunit, factor-dependent RNA polymerase (mtRNAP). Despite its critical role in both expression and replication of the mitochondrial genome, transcription initiation by mtRNAP remains poorly understood. Here, we report crystal structures of human mitochondrial transcription initiation complexes assembled on both light and heavy strand promoters. The structures reveal how transcription factors TFAM and TFB2M assist mtRNAP to achieve promoter-dependent initiation. TFAM tethers the N-terminal region of mtRNAP to recruit the polymerase to the promoter whereas TFB2M induces structural changes in mtRNAP to enable promoter opening and trapping of the DNA non-template strand. Structural comparisons demonstrate that the initiation mechanism in mitochondria is distinct from that in the well-studied nuclear, bacterial, or bacteriophage transcription systems but that similarities are found on the topological and conceptual level. These results provide a framework for studying the regulation of gene expression and DNA replication in mitochondria.


Asunto(s)
ADN Mitocondrial/metabolismo , Proteínas de Unión al ADN/química , Metiltransferasas/química , Mitocondrias/metabolismo , Proteínas Mitocondriales/química , Factores de Transcripción/química , Iniciación de la Transcripción Genética , Secuencia de Aminoácidos , Bacteriófago T7/enzimología , Bacteriófago T7/metabolismo , ADN Mitocondrial/química , Proteínas de Unión al ADN/aislamiento & purificación , Proteínas de Unión al ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Regulación de la Expresión Génica , Humanos , Metiltransferasas/aislamiento & purificación , Metiltransferasas/metabolismo , Mitocondrias/genética , Proteínas Mitocondriales/aislamiento & purificación , Proteínas Mitocondriales/metabolismo , Modelos Moleculares , Complejos Multiproteicos/química , Regiones Promotoras Genéticas , Alineación de Secuencia , Factores de Transcripción/aislamiento & purificación , Factores de Transcripción/metabolismo , Transcripción Genética
4.
Cell ; 171(5): 1082-1093.e13, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-29033127

RESUMEN

In human mitochondria, transcription termination events at a G-quadruplex region near the replication origin are thought to drive replication of mtDNA by generation of an RNA primer. This process is suppressed by a key regulator of mtDNA-the transcription factor TEFM. We determined the structure of an anti-termination complex in which TEFM is bound to transcribing mtRNAP. The structure reveals interactions of the dimeric pseudonuclease core of TEFM with mobile structural elements in mtRNAP and the nucleic acid components of the elongation complex (EC). Binding of TEFM to the DNA forms a downstream "sliding clamp," providing high processivity to the EC. TEFM also binds near the RNA exit channel to prevent formation of the RNA G-quadruplex structure required for termination and thus synthesis of the replication primer. Our data provide insights into target specificity of TEFM and mechanisms by which it regulates the switch between transcription and replication of mtDNA.


Asunto(s)
Replicación del ADN , ADN Mitocondrial/genética , G-Cuádruplex , Proteínas Mitocondriales/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Secuencia de Aminoácidos , ADN Mitocondrial/química , Humanos , Mitocondrias/metabolismo , Proteínas Mitocondriales/química , Modelos Moleculares , Elongación de la Transcripción Genética , Factores de Transcripción/química , Terminación de la Transcripción Genética
5.
J Biol Chem ; 291(26): 13432-5, 2016 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-27226527

RESUMEN

Transcription is a highly regulated process in all domains of life. In human mitochondria, transcription of the circular genome involves only two promoters, called light strand promoter (LSP) and heavy strand promoter (HSP), located in the opposite DNA strands. Initiation of transcription occurs upon sequential assembly of an initiation complex that includes mitochondrial RNA polymerase (mtRNAP) and the initiation factors mitochondrial transcription factor A (TFAM) and TFB2M. It has been recently suggested that the transcription initiation factor TFAM binds to HSP and LSP in opposite directions, implying that the mechanisms of transcription initiation are drastically dissimilar at these promoters. In contrast, we found that binding of TFAM to HSP and the subsequent recruitment of mtRNAP results in a pre-initiation complex that is remarkably similar in topology and properties to that formed at the LSP promoter. Our data suggest that assembly of the pre-initiation complexes on LSP and HSP brings these transcription units in close proximity, providing an opportunity for regulatory proteins to simultaneously control transcription initiation in both mtDNA strands.


Asunto(s)
ADN Mitocondrial/metabolismo , Proteínas de Unión al ADN/metabolismo , Metiltransferasas/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Regiones Promotoras Genéticas/fisiología , Factores de Transcripción/metabolismo , Iniciación de la Transcripción Genética/fisiología , ADN Mitocondrial/genética , Proteínas de Unión al ADN/genética , Humanos , Metiltransferasas/genética , Mitocondrias/genética , Proteínas Mitocondriales/genética , Factores de Transcripción/genética
6.
Nucleic Acids Res ; 43(7): 3726-35, 2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-25800739

RESUMEN

Regulation of transcription of mtDNA is thought to be crucial for maintenance of redox potential and vitality of the cell but is poorly understood at the molecular level. In this study we mapped the binding sites of the core transcription initiation factors TFAM and TFB2M on human mitochondrial RNA polymerase, and interactions of the latter with promoter DNA. This allowed us to construct a detailed structural model, which displays a remarkable level of interaction between the components of the initiation complex (IC). The architecture of the mitochondrial IC suggests mechanisms of promoter binding and recognition that are distinct from the mechanisms found in RNAPs operating in all domains of life, and illuminates strategies of transcription regulation developed at the very early stages of evolution of gene expression.


Asunto(s)
Mitocondrias/metabolismo , Modelos Biológicos , Transcripción Genética , Humanos
7.
Science ; 347(6221): 548-51, 2015 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-25635099

RESUMEN

Coordinated replication and expression of the mitochondrial genome is critical for metabolically active cells during various stages of development. However, it is not known whether replication and transcription can occur simultaneously without interfering with each other and whether mitochondrial DNA copy number can be regulated by the transcription machinery. We found that interaction of human transcription elongation factor TEFM with mitochondrial RNA polymerase and nascent transcript prevents the generation of replication primers and increases transcription processivity and thereby serves as a molecular switch between replication and transcription, which appear to be mutually exclusive processes in mitochondria. TEFM may allow mitochondria to increase transcription rates and, as a consequence, respiration and adenosine triphosphate production without the need to replicate mitochondrial DNA, as has been observed during spermatogenesis and the early stages of embryogenesis.


Asunto(s)
Replicación del ADN , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Proteínas Mitocondriales/metabolismo , ARN/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , ARN Polimerasas Dirigidas por ADN/química , G-Cuádruplex , Genoma Mitocondrial , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/química , Modelos Genéticos , Modelos Moleculares , ARN/química , ARN Mitocondrial , Terminación de la Transcripción Genética
8.
Nucleic Acids Res ; 42(6): 3884-93, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24393772

RESUMEN

The mitochondrial genome is transcribed by a single-subunit T7 phage-like RNA polymerase (mtRNAP), structurally unrelated to cellular RNAPs. In higher eukaryotes, mtRNAP requires two transcription factors for efficient initiation-TFAM, a major nucleoid protein, and TFB2M, a transient component of mtRNAP catalytic site. The mechanisms behind assembly of the mitochondrial transcription machinery and its regulation are poorly understood. We isolated and identified a previously unknown human mitochondrial transcription intermediate-a pre-initiation complex that includes mtRNAP, TFAM and promoter DNA. Using protein-protein cross-linking, we demonstrate that human TFAM binds to the N-terminal domain of mtRNAP, which results in bending of the promoter DNA around mtRNAP. The subsequent recruitment of TFB2M induces promoter melting and formation of an open initiation complex. Our data indicate that the pre-initiation complex is likely to be an important target for transcription regulation and provide basis for further structural, biochemical and biophysical studies of mitochondrial transcription.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , Iniciación de la Transcripción Genética , Proteínas de Unión al ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/química , Humanos , Proteínas Mitocondriales/metabolismo , Regiones Promotoras Genéticas , Dominios y Motivos de Interacción de Proteínas , Factores de Transcripción/metabolismo
9.
Nat Struct Mol Biol ; 20(11): 1298-303, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24096365

RESUMEN

Here we report the crystal structure of the human mitochondrial RNA polymerase (mtRNAP) transcription elongation complex, determined at 2.65-Å resolution. The structure reveals a 9-bp hybrid formed between the DNA template and the RNA transcript and one turn of DNA both upstream and downstream of the hybrid. Comparisons with the distantly related RNA polymerase (RNAP) from bacteriophage T7 indicates conserved mechanisms for substrate binding and nucleotide incorporation but also strong mechanistic differences. Whereas T7 RNAP refolds during the transition from initiation to elongation, mtRNAP adopts an intermediary conformation that is capable of elongation without refolding. The intercalating hairpin that melts DNA during T7 RNAP initiation separates RNA from DNA during mtRNAP elongation. Newly synthesized RNA exits toward the pentatricopeptide repeat (PPR) domain, a unique feature of mtRNAP with conserved RNA-recognition motifs.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/química , Cristalografía por Rayos X , ADN Mitocondrial/química , Humanos , Conformación Proteica , ARN/química , ARN Mitocondrial
10.
Mol Cell ; 49(1): 121-32, 2013 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-23201127

RESUMEN

Human mitochondrial transcription factor A (TFAM) is a high-mobility group (HMG) protein at the nexus of mitochondrial DNA (mtDNA) replication, transcription, and inheritance. Little is known about the mechanisms underlying its posttranslational regulation. Here, we demonstrate that TFAM is phosphorylated within its HMG box 1 (HMG1) by cAMP-dependent protein kinase in mitochondria. HMG1 phosphorylation impairs the ability of TFAM to bind DNA and to activate transcription. We show that only DNA-free TFAM is degraded by the Lon protease, which is inhibited by the anticancer drug bortezomib. In cells with normal mtDNA levels, HMG1-phosphorylated TFAM is degraded by Lon. However, in cells with severe mtDNA deficits, nonphosphorylated TFAM is also degraded, as it is DNA free. Depleting Lon in these cells increases levels of TFAM and upregulates mtDNA content, albeit transiently. Phosphorylation and proteolysis thus provide mechanisms for rapid fine-tuning of TFAM function and abundance in mitochondria, which are crucial for maintaining and expressing mtDNA.


Asunto(s)
ADN Mitocondrial/metabolismo , Proteínas de Unión al ADN/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteasa La/metabolismo , Procesamiento Proteico-Postraduccional , Factores de Transcripción/metabolismo , Sustitución de Aminoácidos , Secuencia de Bases , Sitios de Unión , Ácidos Borónicos/farmacología , Bortezomib , Proteínas Quinasas Dependientes de AMP Cíclico/química , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Técnicas de Silenciamiento del Gen , Genoma Mitocondrial , Células HEK293 , Células HeLa , Humanos , Mitocondrias/enzimología , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Modelos Moleculares , Fosforilación , Proteasa La/antagonistas & inhibidores , Proteasa La/genética , Unión Proteica , Estructura Terciaria de Proteína , Proteolisis , Pirazinas/farmacología , Interferencia de ARN , Factores de Transcripción/química , Factores de Transcripción/genética , Activación Transcripcional
11.
Nature ; 478(7368): 269-73, 2011 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-21947009

RESUMEN

Transcription of the mitochondrial genome is performed by a single-subunit RNA polymerase (mtRNAP) that is distantly related to the RNAP of bacteriophage T7, the pol I family of DNA polymerases, and single-subunit RNAPs from chloroplasts. Whereas T7 RNAP can initiate transcription by itself, mtRNAP requires the factors TFAM and TFB2M for binding and melting promoter DNA. TFAM is an abundant protein that binds and bends promoter DNA 15-40 base pairs upstream of the transcription start site, and stimulates the recruitment of mtRNAP and TFB2M to the promoter. TFB2M assists mtRNAP in promoter melting and reaches the active site of mtRNAP to interact with the first base pair of the RNA-DNA hybrid. Here we report the X-ray structure of human mtRNAP at 2.5 Å resolution, which reveals a T7-like catalytic carboxy-terminal domain, an amino-terminal domain that remotely resembles the T7 promoter-binding domain, a novel pentatricopeptide repeat domain, and a flexible N-terminal extension. The pentatricopeptide repeat domain sequesters an AT-rich recognition loop, which binds promoter DNA in T7 RNAP, probably explaining the need for TFAM during promoter binding. Consistent with this, substitution of a conserved arginine residue in the AT-rich recognition loop, or release of this loop by deletion of the N-terminal part of mtRNAP, had no effect on transcription. The fingers domain and the intercalating hairpin, which melts DNA in phage RNAPs, are repositioned, explaining the need for TFB2M during promoter melting. Our results provide a new venue for the mechanistic analysis of mitochondrial transcription. They also indicate how an early phage-like mtRNAP lost functions in promoter binding and melting, which were provided by initiation factors in trans during evolution, to enable mitochondrial gene regulation and the adaptation of mitochondrial function to changes in the environment.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/química , Mitocondrias/enzimología , Secuencia Rica en At/genética , Secuencia de Aminoácidos , Bacteriófago T7/enzimología , Biocatálisis , Dominio Catalítico , Cristalografía por Rayos X , ADN/química , ADN/genética , ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Datos de Secuencia Molecular , Desnaturalización de Ácido Nucleico , Regiones Promotoras Genéticas/genética , Estructura Terciaria de Proteína , Alineación de Secuencia , Moldes Genéticos , Proteínas Virales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...