Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Express ; 31(12): 19173-19188, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37381340

RESUMEN

Our study proposes a novel method for obtaining speckle-free homogeneous illumination using a combination of a multi-retarder plate, a microlens array, a Fourier lens, and a diffraction optical element (DOE) based on pseudorandom binary sequences. The proof-of-concept multi-retarder plate is introduced to generate multiple uncorrelated laser beams, while a mathematical model was developed to explain the method's mechanism and evaluate its effectiveness. In the DOE passive (stationary) mode, the method was found to reduce speckle contrast to 0.167, 0.108, and 0.053 for red, green, and blue laser diodes, respectively. In active mode, the speckle contrast was further reduced to 0.011, 0.0147, and 0.008. The observed differences in speckle contrast in the stationary mode were attributed to variations in the coherence lengths of the RGB lasers. By implementing the proposed method, we successfully generated a square-shaped illumination spot that was free from interference artifacts. The spot obtained exhibited a slow, weak variation in intensity across the screen, attributable to the multi-retarder plate's suboptimal quality. However, this limitation can be readily addressed in future studies through the adoption of more advanced fabrication techniques.

2.
Sens Diagn ; 1(4): 829-840, 2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35923776

RESUMEN

We propose a novel non-toxic method of diagnostic biomarker extraction and concentration from biofluids. The method is based on the usage of (1) magnetic nanoparticles of a few nanometres in size bearing molecular traps for biomarkers on their surface and (2) additional larger (several tens of nanometres) magnetic nanoparticles for catching smaller magnetic nanoparticles in a strong magnetic field gradient with their consequent concentration into the detection area. It is shown that the interference of an external permanent gradient magnetic field with the magnetic field of large magnetic nanoparticles allows one to catch small magnetic nanoparticles from their trajectories in a fluid at a distance around ten radii of the large nanoparticles. Theoretical analysis and mathematical simulation show the validity of the proposed non-toxic method for fast and robust biomarker extraction and concentration for increasing the sensitivity of biomarker detection. We believe that the results presented herein can serve as a starting point in the development of a new subclass of biosensors and a human body diagnostic approach with enhanced sensitivity and selectivity.

3.
J Phys Chem B ; 126(16): 3170-3179, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35420812

RESUMEN

The swelling and collapsing of thermo-responsive poly(N-isopropylacrylamide)-based polymer (pNIPAAm) networks are investigated in order to reveal the dependency on their kinetics and maximum possible actuation speed. The pNIPAAm-based network was attached as thin hydrogel film to lithographically prepared gold nanoparticle arrays to exploit their localized surface plasmon resonance (LSPR) for rapid local heating. The same substrate also served for LSPR-based monitoring of the reversible collapsing and swelling of the pNIPAAm network through its pronounced refractive index changes. The obtained data reveal signatures of multiple phases during the volume transition, which are driven by the diffusion of water molecules into and out of the network structure and by polymer chain re-arrangement. For the micrometer-thick hydrogel film in the swollen state, the layer can respond as fast as several milliseconds depending on the strength of the heating optical pulse and on the tuning of the ambient temperature with respect to the lower critical solution temperature of the polymer. Distinct differences in the time constants of swelling and collapse are observed and attributed to the dependence of the cooperative diffusion coefficient of polymer chains on polymer volume fraction. The reported results may provide guidelines for novel miniature actuator designs and micromachines that take advantages of the non-reciprocal temperature-induced volume transitions in thermo-responsive hydrogel materials.


Asunto(s)
Nanopartículas del Metal , Polímeros , Oro , Hidrogeles/química , Cinética , Polímeros/química , Temperatura
4.
Molecules ; 26(19)2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34641517

RESUMEN

The investigation of molecular interactions between a silica surface and organic/inorganic polymers is crucial for deeper understanding of the dominant mechanisms of surface functionalization. In this work, attachment of various depolymerized polydimethylsiloxanes (PDMS) of different chain lengths, affected by dimethyl carbonate (DMC), to silica nanoparticles pretreated at different temperatures has been studied using 29Si, 1H, and 13C solid-state NMR spectroscopy. The results show that grafting of different modifier blends onto a preheated silica surface depends strongly on the specific surface area (SSA) linked to the silica nanoparticle size distributions affecting all textural characteristics. The pretreatment at 400 °C results in a greater degree of the modification of (i) A-150 (SSA = 150 m2/g) by PDMS-10/DMC and PDMS-1000/DMC blends; (ii) A-200 by PDMS-10/DMC and PDMS-100/DMC blends; and (iii) A-300 by PDMS-100/DMC and PDMS-1000/DMC blends. The spectral features observed using solid-state NMR spectroscopy suggest that the main surface products of the reactions of various depolymerized PDMS with pretreated nanosilica particles are the (CH3)3SiO-[(CH3)2SiO-]x fragments. The reactions occur with the siloxane bond breakage by DMC and replacing surface hydroxyls. Changes in the chemical shifts and line widths, as shown by solid-state NMR, provide novel information on the whole structure of functionalized nanosilica particles. This study highlights the major role of solid-state NMR spectroscopy for comprehensive characterization of functionalized solid surfaces.

5.
ACS Omega ; 4(3): 6010-6019, 2019 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-31459748

RESUMEN

New nanocomposites have been prepared by combining tin selenide (SnSe) with graphene oxide (GO) in a simple aqueous solution process followed by ice templating (freeze casting). The resulting integration of SnSe within the GO matrix leads to modifications of electrical transport properties and the possibility of influencing the power factor (S 2σ). Moreover, these transport properties can then be further improved (S, σ increased) by functionalization of the GO surface to form modified nanocomposites (SnSe/GOmod) with enhanced power factors in comparison to unmodified nanocomposites (SnSe/GO) and "bare" SnSe itself. Functionalizing the GO by reaction with octadecyltrimethoxysilane (C21H46O3Si) and triethylamine ((CH3CH2)3N) switches SnSe from p-type to n-type conductivity with an appreciable Seebeck coefficient and high electrical conductivity (1257 S·m-1 at 539 K), yielding a 20-fold increase in the power factor compared to SnSe itself, prepared by the same route. These findings present new possibilities to design inexpensive and porous nanocomposites based on metal chalcogenides and functionalized carbon-derived matrices.

6.
Nanoscale Res Lett ; 14(1): 160, 2019 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-31089904

RESUMEN

Three poly(organosiloxanes) (hydromethyl-, dimethyl-, and epoxymethylsiloxane) of different chain lengths and pendant groups and their mixtures of dimethyl (DMC) or diethyl carbonates (DEC) were applied in the modification of fumed silica nanoparticles (FSNs). The resulting modified silicas were studied in depth using 29Si, 1H, and 13C solid-state NMR spectroscopy, elemental analysis, and nitrogen adsorption-desorption (BET) analysis. The obtained results reveal that the type of grafting, grafting density, and structure of the grafted species at the silica surface depend strongly on the length of organosiloxane polymer and on the nature of the "green" additive, DMC or DEC. The spectral changes observed by solid-state NMR spectroscopy suggest that the major products of the reaction of various organosiloxanes and their DMC or DEC mixtures with the surface are D (RR'Si(O0.5)2) and T (RSi(O0.5)3) organosiloxane units. It was found that shorter methylhydro (PMHS) and dimethylsiloxane (PDMS) and their mixtures with DMC or DEC form a denser coverage at the silica surface since SBET diminution is larger and grafting density is higher than the longest epoxymethylsiloxane (CPDMS) used for FSNs modification. Additionally, for FSNs modified with short organosiloxane PMHS/DEC and also medium organosiloxane PDMS/DMC, the dense coverage formation is accompanied by a greater reduction of isolated silanols, as shown by solid-state 29Si NMR spectroscopy, in contrast to reactions with neat organosiloxanes. The surface coverage at FSNs with the longest siloxane (CPDMS) greatly improves with the addition of DMC or DEC. The data on grafting density suggest that molecules in the attached layers of FSNs modified with short PMHS and its mixture of DMC or DEC and medium PDMS and its mixture of DMC form a "vertical" orientation of the grafted methylhydrosiloxane and dimethylsiloxane chains, in contrast to the reaction with PDMS/DEC and epoxide methylsiloxane in the presence of DMC or DEC, which indicates a "horizontal" chain orientation of the grafted methyl and epoxysiloxane molecules. This study highlights the major role of solid-state NMR spectroscopy for comprehensive characterization of solid surfaces.

7.
Opt Express ; 27(9): 13031-13052, 2019 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-31052834

RESUMEN

In this paper, we analyze the ultrafast temporal and spectral responses of optical fields in tapered and metalized optical fibers (MOFs) and optical plasmon nanostrip probes (NPs). Computational experiment shows that output pulses of the NPs are virtually unchanged in shape and duration for input pulses with a duration of >1 fs and are not sensitive to changes in the parameters of the probe (such as convergence angle and taper length), while local enhancement of the electric field intensity reaches 300 times at the NP apex. Compared with the NPs, MOFs lead to significant output pulse distortions, even for input pulses with a duration of 10 fs. In addition, the temporal response at the MOF apex is critically sensitive to changes in MOF parameters and cannot provide any significant local enhancement of the electric field. These findings reveal the high potential of optical plasmon nanostrip probes as an ultrashort pulse delivery system to nanometer-size areas and indicate that its usage can be promising for a wide variety of techniques studying ultrafast processes in nanoscopic volumes.

8.
Appl Opt ; 55(13): 3468-77, 2016 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-27140358

RESUMEN

An analytical model of interference between an electromagnetic field of fundamental quasi-TM(EH)00-mode and an electromagnetic field of background radiation at the apex of a near-field probe based on an optical plasmon microstrip line (microstrip probe) has been proposed. The condition of the occurrence of electromagnetic energy reverse flux at the apex of the microstrip probe was obtained. It has been shown that the nature of the interference depends on the length of the probe. Numerical simulation of the sample scanning process was conducted in illumination-reflection and illumination-collection modes. Results of numerical simulation have shown that interference affects the scanning signal in both modes. However, in illumination-collection mode (pure near-field mode), the signal shape and its polarity are practically insensible to probe length change; only signal amplitude (contrast) is slightly changed. However, changing the probe length strongly affects the signal amplitude and shape in the illumination-reflection mode (the signal formed in the far-field zone). Thus, we can conclude that even small background radiation can significantly influence the signal in the far-field zone and has practically no influence on a pure near-field signal.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA