Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomacromolecules ; 24(4): 1912-1923, 2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-36877869

RESUMEN

Elastin-like peptides (ELPs) are artificially derived intrinsically disordered proteins (IDPs) mimicking the hydrophobic repeat unit in the protein elastin. ELPs are characterized by a lower critical solution temperature (LCST) in aqueous media. Here, we investigate the sequence GVG(VPGVG)3 over a wide range of temperatures (below, around, and above the LCST) and peptide concentrations employing all-atom molecular dynamics simulations, where we focus on the role of intra- and interpeptide interactions. We begin by investigating the structural properties of a single peptide that demonstrates a hydrophobic collapse with temperature, albeit moderate, because the sequence length is short. We observe a change in the interaction between two peptides from repulsive to attractive with temperature by evaluating the potential of mean force, indicating an LCST-like behavior. Next, we explore dynamical and structural properties of peptides in multichain systems. We report the formation of dynamical aggregates with coil-like conformation, in which valine central residues play an important role. Moreover, the lifetime of contacts between chains strongly depends on the temperature and can be described by a power-law decay that is consistent with the LCST-like behavior. Finally, the peptide translational and internal motion are slowed by an increase in the peptide concentration and temperature.


Asunto(s)
Elastina , Péptidos , Temperatura , Elastina/química , Péptidos/química , Frío , Simulación de Dinámica Molecular
2.
Langmuir ; 39(12): 4207-4215, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36919825

RESUMEN

Emulsions often act as carriers for water-insoluble solutes that are delivered to a specific target. The molecular transport of solutes in emulsions can be facilitated by surfactants and is often limited by diffusion through the continuous phase. We here investigate this transport on a molecular scale by using a lipophilic molecular rotor as a proxy for solutes. Using fluorescence lifetime microscopy we track the transport of these molecules from the continuous phase toward the dispersed phase in polydisperse oil-in-water emulsions. We show that this transport comprises two time scales, which vary significantly with droplet size and surfactant concentration, and, depending on the type of surfactant used, can be limited either by transport across the oil-water interface or by diffusion through the continuous phase. By studying the time-resolved fluorescence of the fluorophore, accompanied by molecular dynamics simulations, we demonstrate how the rate of transport observed on a macroscopic scale can be explained in terms of the local environment that the probe molecules are exposed to.

3.
J Chem Phys ; 156(12): 126101, 2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35364874

RESUMEN

We investigate the temperature dependence of thermodynamic (density and isobaric heat capacity), dynamical (self-diffusion coefficient and shear viscosity), and dielectric properties of several water models, such as the commonly employed TIP3P water model, the well-established four-point water model TIP4P-2005, and the recently developed four-point water model TIP4P-D. We focus on the temperature range of interest for the field of computational biophysics and soft matter (280-350 K). The four-point water models lead to a spectacularly improved agreement with experimental data, strongly suggesting that the use of more modern parameterizations should be favored compared to the more traditional TIP3P for modeling temperature-dependent phenomena in biomolecular systems.


Asunto(s)
Agua , Temperatura , Termodinámica , Viscosidad
4.
ACS Appl Mater Interfaces ; 13(25): 30086-30097, 2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34151554

RESUMEN

Natural biological surfaces exhibit interesting properties due to their inhomogeneous chemical and physical structure at the micro- and nanoscale. In the case of hair or skin, this also influences how waterborne macromolecules ingredients will adsorb and form cosmetically performing deposits (i.e., shampoos, cleansers, etc.). Here, we study the adsorption of hydrophilic flexible homopolymers on heterogeneous, chemically patterned substrates that represent the surface of the hair by employing coarse-grained molecular dynamics simulations. We develop a method in which the experimental images of the substrate are used to obtain information about the surface properties. We investigate the polymer adsorption as a function of polymer chain length and polymer concentration spanning both dilute and semidilute regimes. Adsorbed structures are quantified in terms of trains, loops, and tails. We show that upon increasing polymer concentration, the length of tails and loops increases at the cost of monomers belonging to trains. Furthermore, using an effective description, we probe the stability of the resulting adsorbed structures under a linear shear flow. Our work is a first step toward developing models of complex macromolecules interacting with realistic biological surfaces, as needed for the development of more ecofriendly industrial products.

5.
ACS Cent Sci ; 6(2): 166-173, 2020 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-32123734

RESUMEN

A new technology platform built on the integration of theory and experiments to enable the design of Janus colloids with precision control of surface anisotropy and amphiphilicity could lead to a disruptive transformation in the next generation of surfactants, photonic or phononic materials, and coatings. Here, we exploit molecular dynamics (MD) simulations to guide the rational design of amphiphilic polymer Janus colloids by Flash NanoPrecipitation (FNP), a method capable of the production of colloids with complex structure without the compromise of reduced scalability. Aided by in silico design, we show in experiments that amphiphilic Janus colloids can be produced using a unique blend of hydrophobic homopolymers and the addition of an amphiphilic block copolymer. The final structure of the colloids depends on the mass fraction of each homopolymer as well as the concentration and composition of the block copolymer additive. To confirm the surface activity of the colloids, we demonstrate their potential to stabilize Pickering emulsions. This hybrid approach of simulations and experiments provides a pathway to designing and manufacturing complex polymeric colloids on an industrial scale.

6.
Langmuir ; 35(51): 16907-16914, 2019 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-31789037

RESUMEN

We investigate the behavior of polymer colloids at the interface between two immiscible liquids using molecular dynamics simulations. We study several colloid morphologies with various degrees of amphiphilicity, that is, purely solvophobic homogeneous and Janus particles and amphiphilic Janus and core-shell particles. Regardless of the specific morphology, the polymer colloids irreversibly anchor at the liquid-liquid interface, accompanied by a marked reduction of the interfacial tension, γ. Purely solvophobic particles lower γ because they reduce the interfacial area shared by the two immiscible liquids, whereas amphiphilic colloids have an additional enthalpic contribution. At the liquid-liquid interface, the solvophobic particles deform into oblate ellipsoids to maximize the occluded area at the interface. In contrast, amphiphilic Janus colloids orient their solvophobic/solvophilic parts toward the preferred liquids and form a prolate particle shape. The amphiphilic core-shell particles undergo a morphological transition to a prolate Janus-like structure as they anchor at the interface. We rationalize the deformation of the polymer colloids by considering a simple model system of spheroidal particles pinned at the liquid-liquid interface. We systematically compute the interfacial free energy for the various colloids as a function of their asphericity and find excellent qualitative agreement with the simulation findings. Our results show that solvophobic homoparticles can be almost as efficient surface-active agents as amphiphilic Janus colloids.

7.
Langmuir ; 35(3): 709-717, 2019 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-30592617

RESUMEN

We study the stability of polymeric nanoparticles fabricated through the rapid mixing of polymers in a good solvent with a poor solvent that is miscible with the good solvent. In previous experiments where water was used as the poor solvent, a negative surface charge was measured on the precipitated nanoparticles, which led to the long-time stability of the dispersion. It was argued that these charges originate presumably from either water or hydroxide adsorption at the hydrophobic nanoparticle surface or from impurities in the feed streams that preferentially adsorb on the precipitated nanoparticles. To elucidate the origin of this stabilization mechanism, we performed experiments wherein we replaced water with a nonpolar poor solvent. The polymers aggregated into stable nanoparticles for a range of processing parameters. We investigated theoretically three possible explanations for this stability, i.e., electrostatic stabilization, conditional thermodynamic equilibrium, and steric stabilization. Our experiments and considerations suggest that steric stabilization is the most likely candidate.

8.
J Phys Chem B ; 122(7): 2130-2137, 2018 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-29378139

RESUMEN

We study the coil and globule states of a single polymer chain in solution by performing molecular dynamics simulations with a united atom model. Specifically, we characterize the structural properties of atactic polystyrene chains with N = 20-150 monomers in tetrahydrofuran-water mixtures at varying mixing ratios. We find that the hydrophobic polymers form rather open coils when the mole fraction of water, XW, is roughly below 0.25, whereas the chains collapse into globules when XW ≳ 0.75. We confirm the theoretically expected scaling laws for the radius of gyration, Rg, in these regimes, i.e., Rg ∝ N3/5 and Rg ∝ N1/3 for good and poor solvent conditions, respectively. For poor solvent conditions with XW = 0.75, we find a sizable fraction of residual tetrahydrofuran trapped inside the collapsed polymer chains with an excess amount located at the globule surface, acting as a protective layer between the hydrophobic polystyrene and the surrounding water-rich mixture. These findings have important implications for nanoparticle fabrication techniques where solvent exchange is exploited to drive polymer aggregation, since residual solvent can significantly influence the physical properties of the precipitated nanoparticles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...