Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Biomed Phys Eng Express ; 8(2)2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-35086071

RESUMEN

Purpose. This is a dosimetric study comparing stereotactic body radiotherapy (SBRT) plans of spine tumors using Brainlab Elements Spine planning module against Eclipse RapidArc plans. Dose conformity, dose gradient, dose fall-off, and patient-specific quality assurance (QA) metrics were evaluated. Methods:Twenty patients were immobilized in supine position using half Vac-Lok. A prescription dose of 16 Gy in a single fraction was planned for Varian TrueBeam. Conformal arc plans were generated with Pencil beam (PB), MonteCarlo (MC) in Elements, and RapidArc with Acuros XB algorithm in Eclipse using identical treatment geometry.Results. Eclipse, Elements PB, and Elements MC generated dosimetrically conformal plans having Inverse Paddick Conformity Index (IPCI) <1.3. All plans satisfied the dose constraints to target and OARs. Elements PB had a sharper gradient than Elements MC with average GI of 3.67(95% CI: 3.52-3.82) and 4.06 (95% CI: 3.93-4.20) respectively. Eclipse plans were more homogeneous with mean HI = 1.22 (95% CI: 1.20-1.23) that is lower than others. Average maximum clinical target volume (CTV) doses were higher in Elements MC with 22.31 Gy (95% CI: 21.87-22.74), while PB plans have 21.15 Gy (95% CI: 20.36-21.96), respectively. Elements MC and PB plans had lower average dose to 0.35 c.c. of spinal cord (D0.35cc) of 7.60 Gy (95% CI: 7.18-8.02) and 8.42 Gy (95% CI: 7.83-9.01). All plans had >95% points passing the gamma QA criteria at 3%/2 mm.Conclusion. All treatment plans achieved clinically acceptable target coverage >95% and meet spinal cord dose limits. Smart optimization in Brainlab Elements spine module produced dosimetrically superior plans by better spinal cord sparing.


Asunto(s)
Radiocirugia , Radioterapia de Intensidad Modulada , Humanos , Radiometría , Radiocirugia/métodos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos
2.
J Appl Clin Med Phys ; 20(10): 134-141, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31532068

RESUMEN

PURPOSE: This study aims to compare stereotactic radiosurgery (SRS) planning of epilepsy that complies with Radiosurgery or Open Surgery for Epilepsy (ROSE) guidelines in GammaKnife, non-coplanar conformal (NCC) plan in Eclipse, dynamic conformal arc (DCA) plan in Brainlab, and a volumetric modulated arc therapy (VMAT) plan in Eclipse. METHODS: Twenty plans targeting Mesial temporal lobe epilepsy (MTLE) was generated using GammaKnife, Eclipse with 20 NCC beams, Brainlab with 5 DCA, and Eclipse VMAT with 4 arcs observing ROSE trial guidelines. Multivariate analysis of variance and Wilcoxon signed-rank test were used to compare dosimetric data of the plans and perform pairwise comparison, respectively. RESULTS: The plans obeyed the recommended prescription isodose volume (PIV) within 5.5-7.5 cc and maximum doses to brainstem, optic apparatus (OA) of 10 and 8 Gy, respectively, for a prescription dose of 24 Gy. The volumes of the target were in the range 4.0-7.4 cc. Mean PIV, maximum dose to brainstem, OA were 6.5 cc, 10 Gy, 7.9 Gy in GammaKnife; 7.2 cc, 6.1 Gy, 4.5 Gy in Eclipse NCC; 7.2 cc, 6.4 Gy, 5.7 Gy in Brainlab DCA; and 5.2 cc, 8.4 Gy, 6.1 Gy in Eclipse VMAT plans, respectively. Multivariate analysis of variance showed significant differences among the 4 SRS planning techniques (P-values < 0.01). CONCLUSIONS: Among the 4 SRS planning methods, VMAT with least PIV and acceptable maximum doses to brainstem and OA showed highest compliance with ROSE trial. Having the most conformal dose distribution and least dose inhomogeneity, VMAT scored higher than GK, Eclipse NCC, and Brainlab DCA plans.


Asunto(s)
Epilepsia del Lóbulo Temporal/cirugía , Guías de Práctica Clínica como Asunto/normas , Garantía de la Calidad de Atención de Salud/normas , Radiocirugia/normas , Planificación de la Radioterapia Asistida por Computador/métodos , Planificación de la Radioterapia Asistida por Computador/normas , Humanos , Órganos en Riesgo/efectos de la radiación , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/métodos
3.
J Appl Clin Med Phys ; 19(3): 19-26, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29524301

RESUMEN

Robust optimization generates scenario-based plans by a minimax optimization method to find optimal scenario for the trade-off between target coverage robustness and organ-at-risk (OAR) sparing. In this study, 20 lung cancer patients with tumors located at various anatomical regions within the lungs were selected and robust optimization photon treatment plans including intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) plans were generated. The plan robustness was analyzed using perturbed doses with setup error boundary of ±3 mm in anterior/posterior (AP), ±3 mm in left/right (LR), and ±5 mm in inferior/superior (IS) directions from isocenter. Perturbed doses for D99 , D98 , and D95 were computed from six shifted isocenter plans to evaluate plan robustness. Dosimetric study was performed to compare the internal target volume-based robust optimization plans (ITV-IMRT and ITV-VMAT) and conventional PTV margin-based plans (PTV-IMRT and PTV-VMAT). The dosimetric comparison parameters were: ITV target mean dose (Dmean ), R95 (D95 /Dprescription ), Paddick's conformity index (CI), homogeneity index (HI), monitor unit (MU), and OAR doses including lung (Dmean , V20 Gy and V15 Gy ), chest wall, heart, esophagus, and maximum cord doses. A comparison of optimization results showed the robust optimization plan had better ITV dose coverage, better CI, worse HI, and lower OAR doses than conventional PTV margin-based plans. Plan robustness evaluation showed that the perturbed doses of D99 , D98 , and D95 were all satisfied at least 99% of the ITV to received 95% of prescription doses. It was also observed that PTV margin-based plans had higher MU than robust optimization plans. The results also showed robust optimization can generate plans that offer increased OAR sparing, especially for normal lungs and OARs near or abutting the target. Weak correlation was found between normal lung dose and target size, and no other correlation was observed in this study.


Asunto(s)
Neoplasias Pulmonares/tratamiento farmacológico , Órganos en Riesgo/efectos de la radiación , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/normas , Humanos , Dosificación Radioterapéutica , Incertidumbre
4.
Med Phys ; 45(5): 2325-2328, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29480933

RESUMEN

PURPOSE: Intermediate- and low-dose falloff in stereotactic body radiotherapy (SBRT) of lung tumor is known to relate to normal tissue toxicity. The purpose is twofold to analyze the relation between RTOG parameters (namely, R50%, D2cm) in lung SBRT plans and to explore planning methods that correlate with higher than acceptable dose to normal tissue. METHODS: RTOG recommended target dose coverage, conformity index, homogeneity index, R50%, and D2cm were evaluated retrospectively in 105 lung tumor SBRT plans. Deviations in R50% and D2cm were correlated with parameters including prescription dose, tumor location, number of beams or arcs, beam configuration (coplanar or noncoplanar), type of treatment plan (3D-CRT, IMRT or volumetric arc therapy), and shortest distance to the chest wall. RESULT: All plans met the target coverage, conformity index, homogeneity index, and critical organ dose tolerance objectives. Dose falloff product (DFP) of R50% and D2cm has a small variance and small dependence on PTV. Low correlation between DFP and PTV suggests that R50% and D2cm are not independent. Coplanar beam placement was found to be prevalent among plans with large deviations in R50%, D2cm. CONCLUSION: This study questions the independence of the two RTOG recommended metrics, R50% and D2cm in lung SBRT plans, and suggests that noncoplanar beams may provide better normal tissue sparing by reducing the intermediate dose falloff.


Asunto(s)
Neoplasias Pulmonares/radioterapia , Órganos en Riesgo/efectos de la radiación , Radiocirugia/efectos adversos , Planificación de la Radioterapia Asistida por Computador/métodos , Tomografía Computarizada Cuatridimensional , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Dosificación Radioterapéutica
5.
J Appl Clin Med Phys ; 18(5): 237-244, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28771941

RESUMEN

INTRODUCTION: The gamma analysis used for quality assurance of a complex radiotherapy plan examines the dosimetric equivalence between planned and measured dose distributions within some tolerance. This study explores whether the dosimetric difference is correlated with any radiobiological difference between delivered and planned dose. METHODS: VMAT or IMRT plans optimized for 14 cancer patients were calculated and delivered to a QA device. Measured dose was compared against planned dose using 2-D gamma analysis. Dose volume histograms (for various patient structures) obtained by interpolating measured data were compared against the planned ones using a 3-D gamma analysis. Dose volume histograms were used in the Poisson model to calculate tumor control probability for the treatment targets and in the Sigmoid dose-response model to calculate normal tissue complication probability for the organs at risk. RESULTS: Differences in measured and planned dosimetric data for the patient plans passing at ≥94.9% rate at 3%/3 mm criteria are not statistically significant. Average ± standard deviation tumor control probabilities based on measured and planned data are 65.8±4.0% and 67.8±4.1% for head and neck, and 71.9±2.7% and 73.3±3.1% for lung plans, respectively. The differences in tumor control probabilities obtained from measured and planned dose are statistically insignificant. However, the differences in normal tissue complication probabilities for larynx, lungs-GTV, heart, and cord are statistically significant for the patient plans meeting ≥94.9% passing criterion at 3%/3 mm. CONCLUSION: A ≥90% gamma passing criterion at 3%/3 mm cannot assure the radiobiological equivalence between planned and delivered dose. These results agree with the published literature demonstrating the inadequacy of the criterion for dosimetric QA and suggest for a tighter tolerance.


Asunto(s)
Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/normas , Humanos , Distribución de Poisson , Radiobiología , Radiometría , Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada/métodos
6.
Acta Oncol ; 56(8): 1043-1047, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28270018

RESUMEN

INTRODUCTION: Spatially fractionated radiation therapy (SFRT or grid therapy) has proven to be effective in management of bulky tumors. The aim of this project is to study the therapeutic ratio (TR) of helical Tomotherapy (HT)-based grid therapy using linear-quadratic cell survival model. MATERIAL AND METHODS: HT-based grid (or HT-GRID) plan was generated using a patient-specific virtual grid pattern of high-dose cylindrical regions using MLCs. TR was defined as the ratio of normal tissue surviving fraction (SF) under HT-GRID irradiation to an open debulking field of an equivalent dose that result in the same tumor cell SF. TR was estimated from DVH data on ten HT-GRID patient plans with deep seated, bulky tumor. Dependence of the TR values on radiosensitivity of the tumor cells and prescription dose was analyzed. RESULTS: The mean ± standard deviation (SD) of TR was 4.0 ± 0.7 (range: 3.1-5.5) for the 10 patients with single fraction maximum dose of 20 Gy to GTV assuming a tumor cell SF at 2 Gy (SF2t) value of 0·5. In addition, the mean ± SD of TR values for SF2t values of 0.3 and 0.7 were found to be 1 ± 0.1 and 18.0 ± 5.1, respectively. Reducing the prescription dose to 15 and 10 Gy lowered the respective TR values to 2.0 ± 0.2 and 1.2 ± 0.04 for a SF2t value of 0.5. CONCLUSION: HT-GRID therapy demonstrates a significant therapeutic advantage over uniform dose from an open field irradiation for the same tumor cell kill. TR increases with the radioresistance of the tumor cells and with prescription dose.


Asunto(s)
Modelos Biológicos , Neoplasias/radioterapia , Tolerancia a Radiación/efectos de la radiación , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada , Humanos , Dosificación Radioterapéutica , Estudios Retrospectivos
7.
Technol Cancer Res Treat ; 16(6): 811-818, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28355964

RESUMEN

PURPOSE: To assess the quality of cone beam computed tomography images obtained by a robotic arm-based and image-guided small animal conformal radiation therapy device. METHOD AND MATERIALS: The small animal conformal radiation therapy device is equipped with a 40 to 225 kV X-ray tube mounted on a custom made gantry, a 1024 × 1024 pixels flat panel detector (200 µm resolution), a programmable 6 degrees of freedom robot for cone beam computed tomography imaging and conformal delivery of radiation doses. A series of 2-dimensional radiographic projection images were recorded in cone beam mode by placing and rotating microcomputed tomography phantoms on the "palm' of the robotic arm. Reconstructed images were studied for image quality (spatial resolution, image uniformity, computed tomography number linearity, voxel noise, and artifacts). RESULTS: Geometric accuracy was measured to be 2% corresponding to 0.7 mm accuracy on a Shelley microcomputed tomography QA phantom. Qualitative resolution of reconstructed axial computed tomography slices using the resolution coils was within 200 µm. Quantitative spatial resolution was found to be 3.16 lp/mm. Uniformity of the system was measured within 34 Hounsfield unit on a QRM microcomputed tomography water phantom. Computed tomography numbers measured using the linearity plate were linear with material density (R2 > 0.995). Cone beam computed tomography images of the QRM multidisk phantom had minimal artifacts. CONCLUSION: Results showed that the small animal conformal radiation therapy device is capable of producing high-quality cone beam computed tomography images for precise and conformal small animal dose delivery. With its high-caliber imaging capabilities, the small animal conformal radiation therapy device is a powerful tool for small animal research.

8.
J Appl Clin Med Phys ; 18(1): 178-185, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28291935

RESUMEN

RaySearch RayStation Fallback (FB) planning module can generate an equivalent backup radiotherapy treatment plan facilitating treatment on other linear accelerators. FB plans were generated from the RayStation FB module by simulating the original plan target and organ at risk (OAR) dose distribution and delivered in various backup linear accelerators. In this study, helical tomotherapy (HT) backup plans used in Varian TrueBeam linear accelerator were generated with the RayStation FB module. About 30 patients, 10 with lung cancer, 10 with head and neck (HN) cancer, and 10 with prostate cancer, who were treated with HT, were included in this study. Intensity-modulated radiotherapy Fallback plans (FB-IMRT) were generated for all patients, and three-dimensional conformal radiotherapy Fallback plans (FB-3D) were only generated for lung cancer patients. Dosimetric comparison study evaluated FB plans based on dose coverage to 95% of the PTV volume (R95), PTV mean dose (Dmean), Paddick's conformity index (CI), and dose homogeneity index (HI). The evaluation results showed that all IMRT plans were statistically comparable between HT and FB-IMRT plans except that PTV HI was worse in prostate, and PTV R95 and HI were worse in HN multitarget plans for FB-IMRT plans. For 3D lung cancer plans, only the PTV R95 was statistically comparable between HT and FB-3D plans, PTV Dmean was higher, and CI and HI were worse compared to HT plans. The FB plans using a TrueBeam linear accelerator generally offer better OAR sparing compared to HT plans for all the patients. In this study, all cases of FB-IMRT plans and 9/10 cases of FB-3D plans were clinically acceptable without further modification and optimization once the FB plans were generated. However, the statistical differences between HT and FB-IMRT/3D plans might not be of any clinically significant. One FB-3D plan failed to simulate the original plan without further optimization.


Asunto(s)
Neoplasias de Cabeza y Cuello/radioterapia , Procesamiento de Imagen Asistido por Computador/métodos , Neoplasias Pulmonares/radioterapia , Neoplasias de la Próstata/radioterapia , Planificación de la Radioterapia Asistida por Computador/métodos , Tomografía Computarizada Espiral/métodos , Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Masculino , Aceleradores de Partículas , Neoplasias de la Próstata/diagnóstico por imagen , Radiometría , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/métodos
9.
J Appl Clin Med Phys ; 17(1): 396-407, 2016 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-26894367

RESUMEN

Spatially fractionated radiotherapy (GRID) was designed to treat large tumors while sparing skin, and it is usually delivered with a linear accelerator using a commercially available block or multileaf collimator (LINAC-GRID). For deep-seated (skin to tumor distance (> 8 cm)) tumors, it is always a challenge to achieve adequate tumor dose coverage. A novel method to perform GRID treatment using helical tomotherapy (HT-GRID) was developed at our institution. Our approach allows treating patients by generating a patient-specific virtual GRID block (software-generated) and using IMRT technique to optimize the treatment plan. Here, we report our initial clinical experience using HT-GRID, and dosimetric comparison results between HT-GRID and LINAC-GRID. This study evaluates 10 previously treated patients who had deep-seated bulky tumors with complex geometries. Five of these patients were treated with HT-GRID and replanned with LINAC-GRID for comparison. Similarly, five other patients were treated with LINAC-GRID and replanned with HT-GRID for comparison. The prescription was set such that the maximum dose to the GTV is 20 Gy in a single fraction. Dosimetric parameters compared included: mean GTV dose (DGTV mean), GTV dose inhomogeneity (valley-to-peak dose ratio (VPR)), normal tissue doses (DNmean), and other organs-at-risk (OARs) doses. In addition, equivalent uniform doses (EUD) for both GTV and normal tissue were evaluated. In summary, HT-GRID technique is patient-specific, and allows adjustment of the GRID pattern to match different tumor sizes and shapes when they are deep-seated and cannot be adequately treated with LINAC-GRID. HT-GRID delivers a higher DGTV mean, EUD, and VPR compared to LINAC-GRID. HT-GRID delivers a higher DNmean and lower EUD for normal tissue compared to LINAC-GRID. HT-GRID plans also have more options for tumors with complex anatomical relationships between the GTV and the avoidance OARs (abutment or close proximity).


Asunto(s)
Fraccionamiento de la Dosis de Radiación , Procesamiento de Imagen Asistido por Computador/métodos , Neoplasias/radioterapia , Tratamientos Conservadores del Órgano , Planificación de la Radioterapia Asistida por Computador/métodos , Tomografía Computarizada Espiral/métodos , Simulación por Computador , Humanos , Modelos Biológicos , Neoplasias/patología , Órganos en Riesgo/efectos de la radiación , Aceleradores de Partículas , Radioterapia de Intensidad Modulada , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...