Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Condens Matter ; 33(38)2021 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-34212865

RESUMEN

We investigate the ultrafast photoconductivity and charge-carrier transport in thermally annealed Fe-implanted InGaAs/InP films using time-resolved terahertz spectroscopy. The samples were fabricated from crystalline InGaAs films amorphized with Fe ions implantation. The rapid thermal annealing of the InGaAs layer induces solid recrystallization through the formation of polycrystalline grains whose sizes are shown to increase with increasing annealing temperature within the 300-700 °C range. Based on the influence of the laser fluence, the temporal profile of the time-resolved photoconductivity was reproduced using a system of rate equations that describe the photocarrier dynamics in terms of a capture/recombination mechanism. For annealing temperatures below 500 °C, the capture time is found to be less than 1 ps while the recombination time from the charged states did not exceed 5 ps. However, for higher annealing temperatures, the capture and the recombination times show a continuous increase, reaching 7.1 ps and 1 ns respectively, for the film annealed at 700 °C. Frequency-dependent photoconductivity curves are analyzed via a modified Drude-Smith model that considers a diffusive restoring current and the confining particles' sizes. Our results demonstrate that the localization parameter of the photocarrier transport model is correlated to the polycrystalline grain size. We also show that a relatively high effective mobility of about 2570 cm2 V-1 s-1is preserved in all these Fe-implanted InGaAs films.

2.
Nanomaterials (Basel) ; 10(12)2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33297597

RESUMEN

The epitaxy of III-V semiconductors on silicon substrates remains challenging because of lattice parameter and material polarity differences. In this work, we report on the Metal Organic Chemical Vapor Deposition (MOCVD) and characterization of InAs/GaAs Quantum Dots (QDs) epitaxially grown on quasi-nominal 300 mm Ge/Si(001) and GaAs(001) substrates. QD properties were studied by Atomic Force Microscopy (AFM) and Photoluminescence (PL) spectroscopy. A wafer level µPL mapping of the entire 300 mm Ge/Si substrate shows the homogeneity of the three-stacked InAs QDs emitting at 1.30 ± 0.04 µm at room temperature. The correlation between PL spectroscopy and numerical modeling revealed, in accordance with transmission electron microscopy images, that buried QDs had a truncated pyramidal shape with base sides and heights around 29 and 4 nm, respectively. InAs QDs on Ge/Si substrate had the same shape as QDs on GaAs substrates, with a slightly increased size and reduced luminescence intensity. Our results suggest that 1.3 µm emitting InAs QDs quantum dots can be successfully grown on CMOS compatible Ge/Si substrates.

3.
Nanoscale Adv ; 2(1): 340-346, 2020 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-36133992

RESUMEN

We investigate the structural, optical and terahertz properties of graphene-mesoporous silicon nanocomposites using Raman, terahertz time-domain and photoluminescence spectroscopy. The nanocomposites consist of a free-standing mesoporous silicon membrane with its external and pore surfaces coated with few-layer graphene. Results show a stabilization of the porous silicon morphology by the graphene coating. The terahertz refractive index and absorption coefficient were found to increase with graphene deposition temperature. Four bands in the 1.79-2.2 eV range emerge from the PL spectra of the nanocomposites. The broad bands centered at 1.79 eV and 1.96 eV were demonstrated to originate from Si nanocrystallites of different sizes. The narrower bands at 2.11 eV and 2.14 eV could be related to a thin SiC film at the Si/C interface.

4.
Biointerphases ; 11(1): 019301, 2016 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-26903310

RESUMEN

Photocorrosion of semiconductors is strongly sensitive to the presence of surface states, and it could be influenced by electrically charged molecules immobilized near the semiconductor/electrolyte interface. The underlying mechanism is related to band bending of the semiconductor structure near the surface and the associated distribution of excited electrons and holes. The authors have employed photoluminescence of GaAs/AlGaAs quantum heterostructures for monitoring in situ the photocorrosion effect, and demonstrating detection of nongrowing Legionella pneumophila suspended in phosphate buffered saline solution. Antibody functionalized samples allowed direct detection of these bacteria at 10(4) bacteria/ml. The authors discuss the sensitivity of the process related to the ability of creating conditions suitable for photocorrosion proceeding at extremely slow rates and the interaction of an electric charge of bacteria with the surface of a biofunctionalized semiconductor.


Asunto(s)
Técnicas Biosensibles/métodos , Legionella pneumophila/aislamiento & purificación , Óptica y Fotónica/métodos , Mediciones Luminiscentes , Sensibilidad y Especificidad
5.
Materials (Basel) ; 9(7)2016 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-28773633

RESUMEN

We report on Chemical Beam Epitaxy (CBE) growth of wavelength tunable InAs/GaAs quantum dots (QD) based superluminescent diode's active layer suitable for Optical Coherence Tomography (OCT). The In-flush technique has been employed to fabricate QD with controllable heights, from 5 nm down to 2 nm, allowing a tunable emission band over 160 nm. The emission wavelength blueshift has been ensured by reducing both dots' height and composition. A structure containing four vertically stacked height-engineered QDs have been fabricated, showing a room temperature broad emission band centered at 1.1 µm. The buried QD layers remain insensitive to the In-flush process of the subsequent layers, testifying the reliability of the process for broadband light sources required for high axial resolution OCT imaging.

6.
Opt Express ; 19(5): 4644-52, 2011 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-21369296

RESUMEN

We report quantitative measurement of the relative proportion of δ- and ß-D-mannitol crystalline phases inserted into polyethylene powder pellets, obtained by time-domain terahertz spectroscopy. Nine absorption bands have been identified from 0.2 THz to 2.2 THz. The best quantification of the δ-phase proportion is made using the 1.01 THz absorption band. Coherent detection allows using the spectral phase shift of the transmitted THz waveform to improve the detection sensitivity of the relative δ-phase proportion. We argue that differential phase shift measurements are less sensitive to samples' defects. Using a linear phase shift compensation for pellets of slightly different thicknesses, we were able to distinguish a 0.5% variation in δ-phase proportion.


Asunto(s)
Algoritmos , Manitol/análisis , Manitol/química , Espectroscopía de Terahertz/métodos , Cristalización , Transición de Fase
7.
Opt Express ; 17(10): 8012-28, 2009 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-19434133

RESUMEN

We report several strategies for the fabrication of porous subwavelength fibers using low density Polyethylene plastic for low-loss terahertz light transmission applications. We also characterize transmission losses of the fabricated fibers in terahertz using a novel non-destructive directional coupler method. Within this method a second fiber is translated along the length of the test fiber to probe the power attenuation of a guided mode. The method is especially suitable for measuring transmission losses through short fiber segments, a situation in which standard cutback method is especially difficult to perform. We demonstrate experimentally that introduction of porosity into a subwavelength rod fiber, further reduces its transmission loss by as much as a factor of 10. The lowest fiber loss measured in this work is 0.01 cm(-1) and it is exhibited by the 40% porous subwavelength fiber of diameter 380 microm. For comparison, the loss of a rod-in-the-air subwavelength fiber of a similar diameter was measured to be approximately 0.1 cm(-1), while the bulk loss of a PE plastic used in the fabrication of such fibers is >or= 1 cm(-1). Finally, we present theoretical studies of the optical properties of individual subwavelength fibers and a directional coupler. From these studies we conclude that coupler setup studied in this paper also acts as a low pass filter with a cutoff frequency around 0.3 THz. Considering that the spectrum of a terahertz source used in this work falls off rapidly below 0.25 THz, the reported loss measurements are, thus, the bolometer averages over the approximately 0.25 THz-0.3 THz region.

8.
Angew Chem Int Ed Engl ; 48(18): 3329-32, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19343743

RESUMEN

Easily disrupted: Micelles of a new amphiphilic block copolymer that bear coumarin groups are sensitive to near infrared light by two-photon absorption of the chromophore. Disruption of the micelles under irradiation at 794 nm results in release of both photocleaved coumarin and encapsulated nile red from the hydrophobic core of micelle into aqueous solution, which results in opposing changes in fluorescence emission intensity.


Asunto(s)
Cumarinas/química , Nanopartículas/química , Nanopartículas/efectos de la radiación , Fotólisis , Polímeros/química , Polímeros/efectos de la radiación , Luz , Micelas , Fotones
9.
Photochem Photobiol Sci ; 8(3): 391-5, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19255681

RESUMEN

In the past few years, photodynamic therapy (PDT) has become a major treatment for neovascular age-related macular degeneration (AMD) in which there is abnormal growth of choroidal neovasculature (CNV) that eventually obscures central vision, leading to blindness. However, one of the main limitations of current PDT is the relatively low specificity of the photosensitizer (PS) and light for pathological tissue which may induce damage to adjacent healthy tissue. An alternative approach to circumvent the specificity limitation is to improve the irradiation process. In particular two photon (2-gamma) excitation promises a more precise illumination of the target tissue. PS are activated by the simultaneous absorption of 2-gamma delivered by ultra-fast pulses of near infrared light. In order to evaluate the efficiency of phthalocyanine (Pc) dyes for 2-gamma absorption we measured 2-gamma absorption cross sections (sigma(2)) of a number of metalated Pc (MPc) dyes at lambda(ex) = 800 nm using a femtosecond laser. The studied Pc molecules vary by the type of the central metal ion (Al or Zn) and the number of peripheral sulfo substituents (MPcS). Each MPc dye of our series shows an improved 2-gamma absorption sigma(2) as compared to that obtained for Photofrin (3.1 +/- 0.1 GM, with 1 GM = 10(-50) cm(4) s photon(-1) mol(-1)), the PS currently approved for 1-gamma PDT. Our data show an 2.5-fold enhancement for AlPcCl, AlPcS(2adj) and ZnPcS(3)C(9), up to 10-fold (28.6 +/- 0.72 GM) for the ZnPcS(4) dye relative to Photofrin. These findings confirm the efficiency of Pc for 2-gamma absorption processes and represent the first detailed comparison study of 2-gamma absorption sigma(2) between Photofrin and Pc dyes.


Asunto(s)
Indoles/farmacología , Rayos Láser , Fotones , Fármacos Fotosensibilizantes/farmacología , Absorción , Óxido de Aluminio/química , Éter de Dihematoporfirina/farmacología , Isoindoles , Compuestos Organometálicos/farmacología , Fotoquimioterapia , Teoría Cuántica , Titanio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...