Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Mol Metab ; 82: 101908, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38432400

RESUMEN

OBJECTIVE: Menopause adversely impacts systemic energy metabolism and increases the risk of metabolic disease(s) including hepatic steatosis, but the mechanisms are largely unknown. Dosing female mice with vinyl cyclohexene dioxide (VCD) selectively causes follicular atresia in ovaries, leading to a murine menopause-like phenotype. METHODS: In this study, we treated female C57BL6/J mice with VCD (160 mg/kg i.p. for 20 consecutive days followed by verification of the lack of estrous cycling) to investigate changes in body composition, energy expenditure (EE), hepatic mitochondrial function, and hepatic steatosis across different dietary conditions. RESULTS: VCD treatment induced ovarian follicular loss and increased follicle-stimulating hormone (FSH) levels in female mice, mimicking a menopause-like phenotype. VCD treatment did not affect body composition, or EE in mice on a low-fat diet (LFD) or in response to a short-term (1-week) high-fat, high sucrose diet (HFHS). However, the transition to a HFHS lowered cage activity in VCD mice. A chronic HFHS diet (16 weeks) significantly increased weight gain, fat mass, and hepatic steatosis in VCD-treated mice compared to HFHS-fed controls. In the liver, VCD mice showed suppressed hepatic mitochondrial respiration on LFD, while chronic HFHS resulted in compensatory increases in hepatic mitochondrial respiration. Also, liver RNA sequencing revealed that VCD promoted global upregulation of hepatic lipid/cholesterol synthesis pathways. CONCLUSION: Our findings suggest that the VCD-induced menopause model compromises hepatic mitochondrial function and lipid/cholesterol homeostasis that sets the stage for HFHS diet-induced steatosis while also increasing susceptibility to obesity.


Asunto(s)
Alquenos , Hígado Graso , Atresia Folicular , Femenino , Ratones , Animales , Menopausia , Ovario/metabolismo , Hígado Graso/inducido químicamente , Hígado Graso/metabolismo , Modelos Animales de Enfermedad , Colesterol/metabolismo , Aumento de Peso
2.
JCI Insight ; 9(4)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38385748

RESUMEN

BACKGROUNDWhile the benefits of statin therapy on atherosclerotic cardiovascular disease are clear, patients often experience mild to moderate skeletal myopathic symptoms, the mechanism for which is unknown. This study investigated the potential effect of high-dose atorvastatin therapy on skeletal muscle mitochondrial function and whole-body aerobic capacity in humans.METHODSEight overweight (BMI, 31.9 ± 2.0) but otherwise healthy sedentary adults (4 females, 4 males) were studied before (day 0) and 14, 28, and 56 days after initiating atorvastatin (80 mg/d) therapy.RESULTSMaximal ADP-stimulated respiration, measured in permeabilized fiber bundles from muscle biopsies taken at each time point, declined gradually over the course of atorvastatin treatment, resulting in > 30% loss of skeletal muscle mitochondrial oxidative phosphorylation capacity by day 56. Indices of in vivo muscle oxidative capacity (via near-infrared spectroscopy) decreased by 23% to 45%. In whole muscle homogenates from day 0 biopsies, atorvastatin inhibited complex III activity at midmicromolar concentrations, whereas complex IV activity was inhibited at low nanomolar concentrations.CONCLUSIONThese findings demonstrate that high-dose atorvastatin treatment elicits a striking progressive decline in skeletal muscle mitochondrial respiratory capacity, highlighting the need for longer-term dose-response studies in different patient populations to thoroughly define the effect of statin therapy on skeletal muscle health.FUNDINGNIH R01 AR071263.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Enfermedades Musculares , Masculino , Adulto , Femenino , Humanos , Atorvastatina/farmacología , Atorvastatina/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Mitocondrias , Enfermedades Musculares/metabolismo
3.
Cell Rep ; 42(10): 113291, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37862166

RESUMEN

Dysfunctional mitochondria are removed via multiple pathways, such as mitophagy, a selective autophagy process. Here, we identify an intracellular hybrid mitochondria-lysosome organelle (termed the mitochondria-lysosome-related organelle [MLRO]), which regulates mitochondrial homeostasis independent of canonical mitophagy during hepatocyte dedifferentiation. The MLRO is an electron-dense organelle that has either a single or double membrane with both mitochondria and lysosome markers. Mechanistically, the MLRO is likely formed from the fusion of mitochondria-derived vesicles (MDVs) with lysosomes through a PARKIN-, ATG5-, and DRP1-independent process, which is negatively regulated by transcription factor EB (TFEB) and associated with mitochondrial protein degradation and hepatocyte dedifferentiation. The MLRO, which is galectin-3 positive, is reminiscent of damaged lysosome and could be cleared by overexpression of TFEB, resulting in attenuation of hepatocyte dedifferentiation. Together, results from this study suggest that the MLRO may act as an alternative mechanism for mitochondrial quality control independent of canonical autophagy/mitophagy involved in cell dedifferentiation.


Asunto(s)
Mitocondrias , Orgánulos , Mitocondrias/metabolismo , Orgánulos/metabolismo , Lisosomas/metabolismo , Autofagia/fisiología , Mitofagia/fisiología
4.
Am J Physiol Regul Integr Comp Physiol ; 325(6): R712-R724, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37811712

RESUMEN

High versus low aerobic capacity significantly impacts the risk for metabolic diseases. Rats selectively bred for high or low intrinsic aerobic capacity differently modify hepatic bile acid metabolism in response to high-fat diets (HFDs). Here we tested if a bile acid sequestrant would alter hepatic and whole body metabolism differently in rats with high and low aerobic capacity fed a 1-wk HFD. Male rats (8 mo of age) that were artificially selected to be high (HCR) and low-capacity runners (LCR) with divergent intrinsic aerobic capacities were transitioned from a low-fat diet (LFD, 10% fat) to an HFD (45% fat) with or without a bile acid sequestrant (BA-Seq, 2% cholestyramine resin) for 7 days while maintained in an indirect calorimetry system. HFD + BA-Seq increased fecal excretion of lipids and bile acids and prevented weight and fat mass gain in both strains. Interestingly, HCR rats had increased adaptability to enhance fecal bile acid and lipid loss, resulting in more significant energy loss than their LCR counterpart. In addition, BA-Seq induced a greater expression of hepatic CYP7A1 gene expression, the rate-limiting enzyme of bile acid synthesis in HCR rats both on HFD and HFD + BA-Seq diets. HCR displayed a more significant reduction of RQ in response to HFD than LCR, but HFD + BA-Seq lowered RQ in both groups compared with HFD alone, demonstrating a pronounced impact on metabolic flexibility. In conclusion, BA-Seq provides uniform metabolic benefits for metabolic flexibility and adiposity, but rats with higher aerobic capacity display adaptability for hepatic bile acid metabolism.NEW & NOTEWORTHY The administration of bile acid sequestrant (BA-Seq) has uniform metabolic benefits in terms of metabolic flexibility and adiposity in rats with high and low aerobic capacity. However, rats with higher aerobic capacity demonstrate greater adaptability in hepatic bile acid metabolism, resulting in increased fecal bile acid and lipid loss, as well as enhanced fecal energy loss.


Asunto(s)
Metabolismo Energético , Hígado , Ratas , Masculino , Animales , Metabolismo Energético/genética , Hígado/metabolismo , Dieta Alta en Grasa , Lípidos , Ácidos y Sales Biliares/metabolismo
5.
Pediatr Res ; 94(6): 1942-1950, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37479748

RESUMEN

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases in the U.S. and worldwide. The roles of early postnatal life stress (EPLS) and the fatty acid translocase (CD36) on the pathogenesis of adult-onset NAFLD remain unknown. We hypothesized that EPLS, in the form of neonatal maternal separation (NMS), would predispose mice towards developing adult NAFLD, increase hepatic CD36 expression, and differentially methylate Cd36 promoter concurrently. METHODS: NMS was performed on mice from postnatal day 1 to 21 and a high-fat/high-sucrose (HFS) diet was started at 4 weeks of age to generate four experimental groups: Naive-control diet (CD), Naive-HFS, NMS-CD, and NMS-HFS. RESULTS: NMS alone caused NAFLD in adult male mice at 25 weeks of age. The effects of NMS and HFS were generally additive in terms of NAFLD, hepatic Cd36 mRNA levels, and hepatic Cd36 promoter DNA hypomethylation. Cd36 promoter methylation negatively correlated with Cd36 mRNA levels. Two differentially methylated regions (DMRs) within Cd36 promoter regions appeared to be vulnerable to NMS in the mouse. CONCLUSIONS: Our findings suggest that NMS increases the risk of an individual, particularly male, towards NAFLD when faced with a HFS diet later in life. IMPACT: The key message of this article is that neonatal maternal separation and a postweaning high-fat/high-sucrose diet increased the risk of an individual, particularly male, towards NAFLD in adult life. What this study adds to the existing literature includes the identification of two vulnerable differentially methylated regions in hepatic Cd36 promoters whose methylation levels very strongly negatively correlated with Cd36 mRNA. The impact of this article is that it provides an early-life environment-responsive gene/promoter methylation model and an animal model for furthering the mechanistic study on how the insults in early-life environment are "transmitted" into adulthood and caused NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Masculino , Ratones , Antígenos CD36/genética , Antígenos CD36/metabolismo , Dieta Alta en Grasa , Epigénesis Genética , Hígado/metabolismo , Privación Materna , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/genética , ARN Mensajero/genética , Sacarosa , Estrés Psicológico
6.
Am J Physiol Regul Integr Comp Physiol ; 324(3): R353-R367, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36693166

RESUMEN

Exposure to stress early in life has been associated with adult-onset comorbidities such as chronic pain, metabolic dysregulation, obesity, and inactivity. We have established an early-life stress model using neonatal maternal separation (NMS) in mice, which displays evidence of increased body weight and adiposity, widespread mechanical allodynia, and hypothalamic-pituitary-adrenal axis dysregulation in male mice. Early-life stress and consumption of a Western-style diet contribute to the development of obesity; however, relatively few preclinical studies have been performed in female rodents, which are known to be protected against diet-induced obesity and metabolic dysfunction. In this study, we gave naïve and NMS female mice access to a high-fat/high-sucrose (HFS) diet beginning at 4 wk of age. Robust increases in body weight and fat were observed in HFS-fed NMS mice during the first 10 wk on the diet, driven partly by increased food intake. Female NMS mice on an HFS diet showed widespread mechanical hypersensitivity compared with either naïve mice on an HFS diet or NMS mice on a control diet. HFS diet-fed NMS mice also had impaired glucose tolerance and fasting hyperinsulinemia. Strikingly, female NMS mice on an HFS diet showed evidence of hepatic steatosis with increased triglyceride levels and altered glucocorticoid receptor levels and phosphorylation state. They also exhibited increased energy expenditure as observed via indirect calorimetry and expression of proinflammatory markers in perigonadal adipose. Altogether, our data suggest that early-life stress exposure increased the susceptibility of female mice to develop diet-induced metabolic dysfunction and pain-like behaviors.


Asunto(s)
Dieta Alta en Grasa , Sacarosa en la Dieta , Estrés Psicológico , Animales , Femenino , Ratones , Peso Corporal , Dieta Alta en Grasa/efectos adversos , Sistema Hipotálamo-Hipofisario/metabolismo , Privación Materna , Ratones Endogámicos C57BL , Obesidad/etiología , Obesidad/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Sacarosa en la Dieta/efectos adversos
7.
bioRxiv ; 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38168213

RESUMEN

Menopause adversely impacts systemic energy metabolism and increases the risk of metabolic disease(s) including hepatic steatosis, but the mechanisms are largely unknown. Dosing female mice with vinyl cyclohexene dioxide (VCD) selectively causes follicular atresia in ovaries, leading to a murine menopause-like phenotype. In this study, we treated female C57BL6/J mice with VCD (160mg/kg i.p. for 20 consecutive days followed by verification of the lack of estrous cycling) to investigate changes in body composition, energy expenditure (EE), hepatic mitochondrial function, and hepatic steatosis across different dietary conditions. VCD treatment induced ovarian follicular loss and increased follicle-stimulating hormone (FSH) levels in female mice, mimicking a menopause-like phenotype. VCD treatment did not affect body composition, or EE in mice on a low-fat diet or in response to a short-term (1-week) high-fat, high sucrose diet (HFHS). However, the transition to a HFHS lowered cage activity in VCD mice. A chronic HFHS diet (16 weeks) significantly increased weight gain, fat mass, and hepatic steatosis in VCD-treated mice compared to HFHS-fed controls. In the liver, VCD mice showed suppressed hepatic mitochondrial respiration on LFD, while chronic HFHS diet resulted in compensatory increases in hepatic mitochondrial respiration. Also, liver RNA sequencing revealed that VCD promoted global upregulation of hepatic lipid/cholesterol synthesis pathways. Our findings suggest that the VCD- induced menopause model compromises hepatic mitochondrial function and lipid/cholesterol homeostasis that sets the stage for HFHS diet-induced steatosis while also increasing susceptibility to obesity.

8.
Physiol Rep ; 10(15): e15405, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35923133

RESUMEN

Rats selectively bred for the high intrinsic aerobic capacity runner (HCR) or low aerobic capacity runner (LCR) show pronounced differences in susceptibility for high-fat/high sucrose (HFHS) diet-induced hepatic steatosis and insulin resistance, replicating the protective effect of high aerobic capacity in humans. We have previously shown multiple systemic differences in energy and substrate metabolism that impacts steatosis between HCR and LCR rats. This study aimed to investigate hepatic-specific mechanisms of action via changes in gene transcription. Livers of HCR rats had a greater number of genes that significantly changed in response to 3-day HFHS compared with LCR rats (171 vs. 75 genes: >1.5-fold, p < 0.05). HCR and LCR rats displayed numerous baseline differences in gene expression while on a low-fat control diet (CON). A 3-day HFHS diet resulted in greater expression of genes involved in the conversion of excess acetyl-CoA to cholesterol and bile acid (BA) synthesis compared with the CON diet in HCR, but not LCR rats. These results were associated with higher fecal BA loss and lower serum BA concentrations in HCR rats. Exercise studies in rats and mice also revealed higher hepatic expression of cholesterol and BA synthesis genes. Overall, these results suggest that high aerobic capacity and exercise are associated with upregulated BA synthesis paired with greater fecal excretion of cholesterol and BA, an effect that may play a role in protection against hepatic steatosis in rodents.


Asunto(s)
Dieta Alta en Grasa , Hígado Graso , Animales , Ácidos y Sales Biliares , Colesterol , Dieta Alta en Grasa/efectos adversos , Hígado Graso/metabolismo , Humanos , Metabolismo de los Lípidos/fisiología , Ratones , Ratas , Regulación hacia Arriba
9.
J Hepatol ; 77(3): 619-631, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35452693

RESUMEN

BACKGROUND & AIMS: Vacuole membrane protein 1 (VMP1) is an endoplasmic reticulum (ER) transmembrane protein that regulates the formation of autophagosomes and lipid droplets. Recent evidence suggests that VMP1 plays a critical role in lipoprotein secretion in zebra fish and cultured cells. However, the pathophysiological roles and mechanisms by which VMP1 regulates lipoprotein secretion and lipid accumulation in non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are unknown. METHODS: Liver-specific and hepatocyte-specific Vmp1 knockout mice as well as Vmp1 knock-in mice were generated by crossing Vmp1flox or Vmp1KI mice with albumin-Cre mice or by injecting AAV8-TBG-cre, respectively. Lipid and energy metabolism in these mice were characterized by metabolomic and transcriptome analyses. Mice with hepatic overexpression of VMP1 who were fed a NASH diet were also characterized. RESULTS: Hepatocyte-specific deletion of Vmp1 severely impaired VLDL secretion resulting in massive hepatic steatosis, hepatocyte death, inflammation and fibrosis, which are hallmarks of NASH. Mechanistically, loss of Vmp1 led to decreased hepatic levels of phosphatidylcholine and phosphatidylethanolamine as well as to changes in phospholipid composition. Deletion of Vmp1 in mouse liver also led to the accumulation of neutral lipids in the ER bilayer and impaired mitochondrial beta-oxidation. Overexpression of VMP1 ameliorated steatosis in diet-induced NASH by improving VLDL secretion. Importantly, we also showed that decreased liver VMP1 is associated with NAFLD/NASH in humans. CONCLUSIONS: Our results provide novel insights on the role of VMP1 in regulating hepatic phospholipid synthesis and lipoprotein secretion in the pathogenesis of NAFLD/NASH. LAY SUMMARY: Non-alcoholic fatty liver disease and its more severe form, non-alcoholic steatohepatitis, are associated with a build-up of fat in the liver (steatosis). However, the exact mechanisms that underly steatosis in patients are not completely understood. Herein, the authors identified that the lack of a protein called VMP1 impairs the secretion and metabolism of fats in the liver and could therefore contribute to the development and progression of non-alcoholic fatty liver disease.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Humanos , Lipoproteínas/metabolismo , Hígado/patología , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Fosfolípidos/metabolismo
10.
Nutrients ; 13(8)2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34444756

RESUMEN

The central integration of peripheral neural signals is one mechanism by which systemic energy homeostasis is regulated. Previously, increased acute food intake following the chemical reduction of hepatic fatty acid oxidation and ATP levels was prevented by common hepatic branch vagotomy (HBV). However, possible offsite actions of the chemical compounds confound the precise role of liver energy metabolism. Herein, we used a hepatocyte PGC1a heterozygous (LPGC1a) mouse model, with associated reductions in mitochondrial fatty acid oxidation and respiratory capacity, to assess the role of liver energy metabolism in systemic energy homeostasis. LPGC1a male, but not female, mice had a 70% greater high-fat/high-sucrose (HFHS) diet-induced weight gain compared to wildtype (WT) mice (p < 0.05). The greater weight gain was associated with altered feeding behavior and lower activity energy expenditure during the HFHS diet in LPGC1a males. WT and LPGC1a mice underwent sham surgery or HBV to assess whether vagal signaling was involved in the HFHS-induced weight gain of male LPGC1a mice. HBV increased HFHS-induced weight gain (85%, p < 0.05) in male WT mice, but not LPGC1a mice. These data demonstrate a sex-specific role of reduced liver energy metabolism in acute diet-induced weight gain, and the need for a more nuanced assessment of the role of vagal signaling in short-term diet-induced weight gain.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Hígado/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Animales , Modelos Animales de Enfermedad , Ingestión de Alimentos , Metabolismo Energético , Ácidos Grasos/metabolismo , Femenino , Homeostasis , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Sacarosa/metabolismo , Nervio Vago/metabolismo , Aumento de Peso
11.
Neuroscience ; 468: 53-67, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34107347

RESUMEN

Inflammation plays a key role in the progression and maintenance of chronic pain, which impacts the lives of millions of Americans. Despite growing evidence that chronic pain can be improved by treating underlying inflammation, successful treatments are lacking and pharmaceutical interventions are limited due to drug side effects. Here we are testing whether a 'healthy human' diet (HHD), with or without anti-inflammatory components (HHAID), improves pain-like behaviors in a preclinical model of chronic widespread hypersensitivity induced by neonatal maternal separation (NMS). The HHD and HHAID are isocaloric and macronutrient-matched, have a low glycemic index, and fat content (35 kcal%) that is high in omega-3 fatty acids, while only the HHAID includes a combination of key anti-inflammatory compounds, at clinically relevant doses. Mice on these diets were compared to mice on a control diet with a macronutrient composition commonly used in rodents (20% protein, 70% carbohydrate, 10% fat). Our results demonstrate a benefit of the HHAID on pain-like behaviors in both male and female mice, despite increased caloric intake, adiposity, and weight gain. In female mice, HHAID specifically increased measures of metabolic syndrome and inflammation compared to the HHD and control diet groups. Male mice were susceptible to worsening metabolic measures on both the HHAID and HHD. This work highlights important sexual dimorphic outcomes related to early life stress exposure and dietary interventions, as well as a potential disconnect between improvements in pain-like behaviors and metabolic measures.


Asunto(s)
Ácidos Grasos Omega-3 , Hiperalgesia , Animales , Antiinflamatorios , Dieta , Dieta Alta en Grasa/efectos adversos , Femenino , Hiperalgesia/tratamiento farmacológico , Masculino , Privación Materna , Ratones
12.
Gene Expr ; 20(3): 157-168, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-33691903

RESUMEN

Hepatocyte nuclear factor 4 alpha (HNF4) is required for hepatocyte differentiation and regulates expression of genes involved in lipid and carbohydrate metabolism including those that control VLDL secretion and gluconeogenesis. Whereas previous studies have focused on specific genes regulated by HNF4 in metabolism, its overall role in whole-body energy utilization has not been studied. In this study, we used indirect calorimetry to determine the effect of hepatocyte-specific HNF4 deletion (HNF4-KO) in mice on whole-body energy expenditure (EE) and substrate utilization in fed, fasted, and high-fat diet (HFD) conditions. HNF4-KO had reduced resting EE during fed conditions and higher rates of carbohydrate oxidation with fasting. HNF4-KO mice exhibited decreased body mass caused by fat mass depletion despite no change in energy intake and evidence of positive energy balance. HNF4-KO mice were able to upregulate lipid oxidation during HFD, suggesting that their metabolic flexibility was intact. However, only hepatocyte-specific HNF4-KO mice exhibited significant reduction in basal metabolic rate and spontaneous activity during HFD. Consistent with previous studies, hepatic gene expression in HNF4-KO supports decreased gluconeogenesis and decreased VLDL export and hepatic -oxidation in HNF4-KO livers across all feeding conditions. Together, our data suggest that deletion of hepatic HNF4 increases dependence on dietary carbohydrates and endogenous lipids for energy during fed and fasted conditions by inhibiting hepatic gluconeogenesis, hepatic lipid export, and intestinal lipid absorption resulting in decreased whole-body energy expenditure. These data clarify the role of hepatic HNF4 on systemic metabolism and energy homeostasis.


Asunto(s)
Metabolismo Basal , Metabolismo de los Hidratos de Carbono , Factor Nuclear 4 del Hepatocito/metabolismo , Hepatocitos/metabolismo , Metabolismo de los Lípidos , Animales , Dieta Alta en Grasa , Ayuno/metabolismo , Eliminación de Gen , Factor Nuclear 4 del Hepatocito/genética , Homeostasis , Masculino , Ratones , Ratones Endogámicos C57BL
13.
Obesity (Silver Spring) ; 28(10): 1922-1931, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32857478

RESUMEN

OBJECTIVE: The aim of this study was to test whether increased energy expenditure (EE), independent of physical activity, reduces acute diet-induced weight gain through tighter coupling of energy intake to energy demand and enhanced metabolic adaptations. METHODS: Indirect calorimetry and quantitative magnetic resonance imaging were used to assess energy metabolism and body composition during 7-day high-fat/high-sucrose (HFHS) feeding in male and female mice housed at divergent temperatures (20°C vs. 30°C). RESULTS: As previously observed, 30°C housing resulted in lower total EE and energy intake compared with 20°C mice regardless of sex. Interestingly, housing temperature did not impact HFHS-induced weight gain in females, whereas 30°C male mice gained more weight than 20°C males. Energy intake coupling to EE during HFHS feeding was greater in 20°C versus 30°C housing, with females greater at both temperatures. Fat mass gain was greater in 30°C mice compared with 20°C mice, whereas females gained less fat mass than males. Strikingly, female 20°C mice gained considerably more fat-free mass than 30°C mice. Reduced fat mass gain was associated with greater metabolic flexibility to HFHS, whereas fat-free mass gain was associated with diet-induced adaptive thermogenesis. CONCLUSIONS: These data reveal that EE and sex interact to impact energy homeostasis and metabolic adaptation to acute HFHS feeding, altering weight gain and body composition change.


Asunto(s)
Metabolismo Energético/fisiología , Animales , Dieta Alta en Grasa , Ingestión de Energía , Femenino , Vivienda para Animales , Masculino , Ratones , Factores Sexuales , Temperatura , Termogénesis
14.
Physiol Behav ; 223: 113000, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32512033

RESUMEN

The development of obesity-related metabolic syndrome (MetS) involves a complex interaction of genetic and environmental factors. One environmental factor found to be significantly associated with MetS is early life stress (ELS). We have previously reported on our mouse model of ELS, induced by neonatal maternal separation (NMS), that displays altered regulation of the hypothalamic-pituitary-adrenal (HPA) axis and increased sensitivity in the urogenital organs, which was attenuated by voluntary wheel running. Here, we are using our NMS model to determine if ELS-induced changes in the HPA axis also influence weight gain and MetS. Naïve (non-stressed) and NMS male mice were given free access to a running wheel and a low-fat control diet at 4-weeks of age. At 16-weeks of age, half of the mice were transitioned to a high fat/sucrose (HFS) diet to investigate if NMS influences the effectiveness of voluntary exercise to prevent diet-induced obesity and MetS. Overall, we observed a greater impact of voluntary exercise on prevention of HFS diet-induced outcomes in naïve mice, compared to NMS mice. Although body weight and fat mass were still significantly higher, exercise attenuated fasting insulin levels and mRNA levels of inflammatory markers in epididymal adipose tissue in HFS diet-fed naïve mice. Only moderate changes were observed in exercised NMS mice on a HFS diet, although this could partially be explained by reduced running distance within this group. Interestingly, sedentary NMS mice on a control diet displayed impaired glucose homeostasis and moderately increased pro-inflammatory mRNA levels in epididymal adipose, suggesting that early life stress alone impairs metabolic function and negatively impacts the therapeutic effect of voluntary exercise.


Asunto(s)
Obesidad , Condicionamiento Físico Animal , Estrés Psicológico , Animales , Masculino , Ratones , Dieta Alta en Grasa/efectos adversos , Sistema Hipotálamo-Hipofisario , Privación Materna , Ratones Endogámicos C57BL , Actividad Motora , Obesidad/etiología , Obesidad/prevención & control , Sistema Hipófiso-Suprarrenal
16.
Am J Physiol Endocrinol Metab ; 317(4): E605-E616, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31361543

RESUMEN

Dysregulated mitochondrial quality control leads to mitochondrial functional impairments that are central to the development and progression of hepatic steatosis to nonalcoholic steatohepatitis (NASH). Here, we identify hepatocellular localized endothelial nitric oxide synthase (eNOS) as a novel master regulator of mitochondrial quality control. Mice lacking eNOS were more susceptible to Western diet-induced hepatic inflammation and fibrosis in conjunction with decreased markers of mitochondrial biogenesis and turnover. The hepatocyte-specific influence was verified via magnetic activated cell sorting purified primary hepatocytes and in vitro siRNA-induced knockdown of eNOS. Hepatic mitochondria from eNOS knockout mice revealed decreased markers of mitochondrial biogenesis (PPARγ coactivator-1α, mitochondrial transcription factor A) and autophagy/mitophagy [BCL-2-interacting protein-3 (BNIP3), 1A/1B light chain 3B (LC3)], suggesting decreased mitochondrial turnover rate. eNOS knockout in primary hepatocytes exhibited reduced fatty acid oxidation capacity and were unable to mount a normal BNIP3 response to a mitophagic challenge compared with wild-type mice. Finally, we demonstrate that eNOS is required in primary hepatocytes to induce activation of the stress-responsive transcription factor nuclear factor erythroid 2-related factor 2 (NRF2). Thus, our data demonstrate that eNOS is an important regulator of hepatic mitochondrial content and function and NASH susceptibility.


Asunto(s)
Dieta Occidental/efectos adversos , Mitocondrias Hepáticas/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Animales , Autofagia/genética , Técnicas de Silenciamiento del Gen , Hepatocitos/patología , Masculino , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Mitocondriales/biosíntesis , Proteínas Mitocondriales/genética , Mitofagia , Factor 2 Relacionado con NF-E2/biosíntesis , Factor 2 Relacionado con NF-E2/genética , Cultivo Primario de Células , ARN Interferente Pequeño/farmacología
17.
Am J Physiol Endocrinol Metab ; 317(2): E298-E311, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31039007

RESUMEN

The impact of sexual dimorphism and mitophagy on hepatic mitochondrial adaptations during the treatment of steatosis with physical activity are largely unknown. Here, we tested if deficiencies in liver-specific peroxisome proliferative activated-receptor-γ coactivator-1α (PGC-1α), a transcriptional coactivator of biogenesis, and BCL-2/ADENOVIRUS EIB 19-kDa interacting protein (BNIP3), a mitophagy regulator, would impact hepatic mitochondrial adaptations (respiratory capacity, H2O2 production, mitophagy) to a high-fat diet (HFD) and HFD plus physical activity via voluntary wheel running (VWR) in both sexes. Male and female wild-type (WT), liver-specific PGC-1α heterozygote (LPGC-1α), and BNIP3 null mice were thermoneutral housed (29-31°C) and divided into three groups: sedentary-low-fat diet (LFD), 16 wk of (HFD), or 16 wk of HFD with VWR for the final 8 wk (HFD + VWR) (n = 5-7/sex/group). HFD did not impair mitochondrial respiratory capacity or coupling in any group; however, HFD + VWR significantly increased maximal respiratory capacity only in WT and PGC-1α females. Males required VWR to elicit mitochondrial adaptations that were inherently present in sedentary females including greater mitochondrial coupling control and reduced H2O2 production. Females had overall reduced markers of mitophagy, steatosis, and liver damage. Steatosis and markers of liver injury were present in sedentary male mice on the HFD and were effectively reduced with VWR despite no resolution of steatosis. Overall, reductions in PGC-1α and loss of BNIP3 only modestly impacted mitochondrial adaptations to HFD and HFD + VWR with the biggest effect seen in BNIP3 females. In conclusion, hepatic mitochondrial adaptations to HFD and treatment of HFD-induced steatosis with VWR are more dependent on sex than PGC-1α or BNIP3.


Asunto(s)
Dieta Alta en Grasa , Mitocondrias Hepáticas/metabolismo , Esfuerzo Físico , Animales , Dieta con Restricción de Grasas , Femenino , Regulación de la Expresión Génica , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mitofagia , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Consumo de Oxígeno , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Condicionamiento Físico Animal , Conducta Sedentaria , Caracteres Sexuales
18.
Endocrinology ; 160(5): 1179-1192, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31144719

RESUMEN

Low aerobic capacity increases the risk for insulin resistance but the mechanisms are unknown. In this study, we tested susceptibility to acute (3-day) high-fat, high-sucrose diet (HFD)-induced insulin resistance in male rats selectively bred for divergent intrinsic aerobic capacity, that is, high-capacity running (HCR) and low-capacity running (LCR) rats. We employed hyperinsulinemic-euglycemic clamps, tracers, and transcriptome sequencing of skeletal muscle to test whether divergence in aerobic capacity impacted insulin resistance through systemic and tissue-specific metabolic adaptations. An HFD evoked decreased insulin sensitivity and insulin signaling in muscle and liver in LCR rats, whereas HCR rats were protected. An HFD led to increased glucose transport in skeletal muscle (twofold) of HCR rats while increasing glucose transport into adipose depots of the LCR rats (twofold). Skeletal muscle transcriptome revealed robust differences in the gene profile of HCR vs LCR on low-fat diet and HFD conditions, including robust differences in specific genes involved in lipid metabolism, adipogenesis, and differentiation. HCR transcriptional adaptations to an acute HFD were more robust than for LCR and included genes driving mitochondrial energy metabolism. In conclusion, intrinsic aerobic capacity robustly impacts systemic and skeletal muscle adaptations to HFD-induced alterations in insulin resistance, an effect that is likely driven by baseline differences in oxidative capacity, gene expression profile, and transcriptional adaptations to an HFD.


Asunto(s)
Dieta Alta en Grasa , Perfilación de la Expresión Génica/métodos , Resistencia a la Insulina/genética , Hígado/metabolismo , Músculo Esquelético/metabolismo , Condicionamiento Físico Animal/fisiología , Carrera/fisiología , Adipogénesis/genética , Animales , Metabolismo Energético/genética , Metabolismo de los Lípidos/genética , Masculino , Ratas , Análisis de Secuencia de ARN/métodos
19.
J Physiol ; 596(24): 6157-6171, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30062822

RESUMEN

KEY POINTS: Hepatic mitochondrial adaptations to physical activity may be regulated by mitochondrial biogenesis (PGC1α) and mitophagy (BNIP3). Additionally, these adaptations may be sex-dependent. Chronic increase in physical activity lowers basal mitochondrial respiratory capacity in mice. Female mice have higher hepatic electron transport system protein content, elevated respiratory capacity, lowered mitophagic flux, and emit less mitochondrial H2 O2 independent of physical activity. Males require chronic daily physical activity to attain a similar mitochondrial phenotype compared to females. In contrast, females have limited hepatic adaptations to chronic physical activity. Livers deficient in PGC1α and BNIP3 display similar mitochondrial adaptations to physical activity to those found in wild-type mice. ABSTRACT: Hepatic mitochondrial adaptations to physical activity may be regulated by biogenesis- and mitophagy-associated pathways in a sex-dependent manner. Here, we tested if mice with targeted deficiencies in liver-specific peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α; LPGC1α+/- ) and BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3)-mediated mitophagy (BNIP3-/- ) would have reduced physical activity-induced adaptations in respiratory capacity, H2 O2 emission and mitophagy compared to wild-type (WT) controls and if these effects were impacted by sex. Male and female WT, LPGC1α+/- and BNIP3-/- C57BL6/J mice were divided into groups that remained sedentary or had access to daily physical activity via voluntary wheel running (VWR) (n = 6-10/group) for 4 weeks. Mice had ad libitum access to low-fat diet and water. VWR reduced basal mitochondrial respiration, increased mitochondrial coupling and altered ubiquitin-mediated mitophagy in a sex-specific manner in WT mice. Female mice of all genotypes displayed higher electron transport system content, displayed increased ADP-stimulated respiration, produced less mitochondrially derived reactive oxygen species, exhibited reduced mitophagic flux, and were less responsive to VWR compared to males. Males responded more robustly to VWR-induced changes in hepatic mitochondrial function resulting in a match to adaptations found in females. Deficiencies in PGC1α and BNIP3 alone did not largely alter mitochondrial adaptations to VWR. However, VWR restored sex-dependent abnormalities in mitophagic flux in LPGC1α+/- . Finally, BNIP3-/- mice had elevated mitochondrial content and increased mitochondrial respiration putatively through repressed mitophagic flux. In conclusion, hepatic mitochondrial adaptations to physical activity are more dependent on sex than PGC1α and BNIP3.


Asunto(s)
Adaptación Fisiológica/fisiología , Proteínas de la Membrana/metabolismo , Mitocondrias Hepáticas/metabolismo , Proteínas Mitocondriales/metabolismo , Mitofagia/fisiología , Actividad Motora/fisiología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Animales , Femenino , Regulación de la Expresión Génica , Genotipo , Peróxido de Hidrógeno , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Proteínas Mitocondriales/genética , Consumo de Oxígeno , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores Sexuales
20.
Am J Physiol Regul Integr Comp Physiol ; 315(4): R696-R707, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29924632

RESUMEN

Induction of the chaperone heat shock protein 72 (HSP72) through heat treatment (HT), exercise, or overexpression improves glucose tolerance and mitochondrial function in skeletal muscle. Less is known about HSP72 function in the liver where lipid accumulation can result in insulin resistance and nonalcoholic fatty liver disease (NAFLD). The purpose of this study was 1) to determine whether weekly in vivo HT induces hepatic HSP72 and improves glucose tolerance in rats fed a high-fat diet (HFD) and 2) to determine the ability of HSP72 to protect against lipid accumulation and mitochondrial dysfunction in primary hepatocytes. Male Wistar rats were fed an HFD for 15 wk and were given weekly HT (41°C, 20 min) or sham treatments (37°C, 20 min) for the final 7 wk. Glucose tolerance and insulin sensitivity were assessed, along with HSP72 induction and triglyceride storage, in the skeletal muscle and liver. The effect of an acute loss of HSP72 in primary hepatocytes was examined via siRNA. Weekly in vivo HT improved glucose tolerance, elevated muscle and hepatic HSP72 protein content, and reduced muscle triglyceride storage. In primary hepatocytes, mitochondrial morphology was changed, and fatty acid oxidation was reduced in small interfering HSP72 (siHSP72)-treated hepatocytes. Lipid accumulation following palmitate treatment was increased in siHSP72-treated hepatocytes. These data suggest that HT may improve systemic metabolism via induction of hepatic HSP72. Additionally, acute loss of HSP72 in primary hepatocytes impacts mitochondrial health as well as fat oxidation and storage. These findings suggest therapies targeting HSP72 in the liver may prevent NAFLD.


Asunto(s)
Proteínas del Choque Térmico HSP72/metabolismo , Hepatocitos/metabolismo , Hipertermia Inducida , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/terapia , Animales , Glucemia/metabolismo , Células Cultivadas , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Ácidos Grasos/metabolismo , Proteínas del Choque Térmico HSP72/genética , Hepatocitos/ultraestructura , Resistencia a la Insulina , Hígado/ultraestructura , Masculino , Ratones Endogámicos C57BL , Mitocondrias Hepáticas/metabolismo , Mitocondrias Hepáticas/patología , Músculo Esquelético/metabolismo , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Oxidación-Reducción , Ratas Wistar , Transducción de Señal , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA