Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(2): e0298939, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38394278

RESUMEN

Tropical peatland across Southeast Asia is drained extensively for production of pulpwood, palm oil and other food crops. Associated increases in peat decomposition have led to widespread subsidence, deterioration of peat condition and CO2 emissions. However, quantification of subsidence and peat condition from these processes is challenging due to the scale and inaccessibility of dense tropical peat swamp forests. The development of satellite interferometric synthetic aperture radar (InSAR) has the potential to solve this problem. The Advanced Pixel System using Intermittent Baseline Subset (APSIS, formerly ISBAS) modelling technique provides improved coverage across almost all land surfaces irrespective of ground cover, enabling derivation of a time series of tropical peatland surface oscillations across whole catchments. This study aimed to establish the extent to which APSIS-InSAR can monitor seasonal patterns of tropical peat surface oscillations at North Selangor Peat Swamp Forest, Peninsular Malaysia. Results showed that C-band SAR could penetrate the forest canopy over tropical peat swamp forests intermittently and was applicable to a range of land covers. Therefore the APSIS technique has the potential for monitoring peat surface oscillations under tropical forest canopy using regularly acquired C-band Sentinel-1 InSAR data, enabling continuous monitoring of tropical peatland surface motion at a spatial resolution of 20 m.


Asunto(s)
Bosques , Radar , Suelo , Asia Sudoriental , Humedales
2.
J Med Chem ; 67(4): 2379-2396, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38349223

RESUMEN

Lysophosphatidic acid receptor 1 (LPAR1) antagonists show promise as potentially novel antifibrotic treatments. In a human LPAR1 ß-arrestin recruitment-based high-throughput screening campaign, we identified urea 19 as a hit with a LPAR1 IC50 value of 5.0 µM. Hit-to-lead activities revealed that one of the urea nitrogen atoms can be replaced by carbon and establish the corresponding phenylacetic amide as a lead structure for further optimization. Medicinal chemistry efforts led to the discovery of piperidine 18 as a potent and selective LPAR1 antagonist with oral activity in a mouse model of LPA-induced skin vascular leakage. The molecular scaffold of 18 shares no obvious structural similarity with any other LPAR1 antagonist disclosed so far.


Asunto(s)
Amidas , Receptores del Ácido Lisofosfatídico , Ratones , Animales , Humanos , Modelos Animales de Enfermedad , Urea
3.
J Med Chem ; 67(4): 2397-2424, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38349250

RESUMEN

Piperidine 3 is a potent and selective lysophosphatidic acid receptor subtype 1 receptor (LPAR1) antagonist that has shown efficacy in a skin vascular leakage target engagement model in mice. However, compound 3 has very high human plasma protein binding and high clearance in rats, which could significantly hamper its clinical development. Continued lead optimization led to the potent, less protein bound, metabolically stable, and orally active azetidine 17. Rat pharmacokinetics (PK) studies revealed that 17 accumulated in the liver. In vitro studies indicated that 17 is an organic anion co-transporting polypeptide 1B1 (OATP1B1) substrate. Although analogue 24 was no longer a substrate of OATP1B1, PK studies suggested that the compound undergoes enterohepatic recirculation. Replacing the carboxylic acidic side chain by a non-acidic sulfamide moiety and further fine-tuning of the scaffold yielded the potent, orally active LPAR1 antagonist 49, which was selected for preclinical development for the treatment of fibrotic diseases.


Asunto(s)
Transportadores de Anión Orgánico , Receptores del Ácido Lisofosfatídico , Humanos , Ratas , Ratones , Animales , Receptores del Ácido Lisofosfatídico/metabolismo , Hígado/metabolismo
4.
Sci Rep ; 14(1): 1762, 2024 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-38243067

RESUMEN

The development of new antibiotics has stalled, and novel strategies are needed as we enter the age of antibiotic resistance. Certain naturally occurring clays have been shown to be effective in killing antibiotic resistant bacteria. However, these natural clays are too variable to be used in clinical settings. Our study shows that synthetic antibacterial minerals exhibit potent antibacterial activity against topical MRSA infections and increase the rate of wound closure relative to controls. The antibacterial minerals maintain a redox cycle between Fe2+/Fe3+ and the surfaces of pyrite minerals, which act as a semiconductor and produce reactive oxygen species (ROS), while smectite minerals act as a cation exchange reservoir. Acidic conditions are maintained throughout the application of the hydrated minerals and can mitigate the alkaline pH conditions observed in chronic non-healing wounds. These results provide evidence for the strategy of 'iron overload' to combat antibiotic resistant infections through the maintained release of Fe2+ and generation of ROS via distinct geochemical reactions that can break the chronic wound damage cycle.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Ratones , Animales , Arcilla , Especies Reactivas de Oxígeno/farmacología , Minerales/farmacología , Antibacterianos/farmacología
5.
Sci Rep ; 13(1): 21256, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38040754

RESUMEN

Understanding the thermal decomposition behavior of TATB (1,3,5-triamino-2,4,6-trinitrobenzene) is a major focus in energetic materials research because of safety issues. Previous research and modelling efforts have suggested benzo-monofurazan condensation producing H2O is the initiating decomposition step. However, early evolving CO2 (m/z 44) along with H2O (m/z 18) evolution have been observed by mass spectrometric monitoring of head-space gases in both constant heating rate and isothermal decomposition studies. The source of the CO2 has not been explained, until now. With the recent successful synthesis of 13C6-TATB (13C incorporated into the benzene ring), the same experiments have been used to show the source of the CO2 is the early breakdown of the TATB ring, not adventitious C from impurities and/or adsorbed CO2. A shift in mass m/z 44 (CO2) to m/z 45 is observed throughout the decomposition process indicating the isotopically labeled 13C ring breakdown occurs at the onset of thermal decomposition along with furazan formation. Partially labeled (N18O2)3-TATB confirms at least some of the oxygen comes from the nitro-groups. This finding has a significant bearing on decomposition computational models for prediction of energy release and deflagration to detonation transitions, with respect to conditions which currently do not recognize this oxidation step.

6.
Environ Sci Technol ; 57(49): 20830-20843, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37897703

RESUMEN

Minor actinides are major contributors to the long-term radiotoxicity of nuclear fuels and other radioactive wastes. In this context, understanding their interactions with natural chelators and minerals is key to evaluating their transport behavior in the environment. The lanmodulin family of metalloproteins is produced by ubiquitous bacteria and Methylorubrum extorquens lanmodulin (LanM) was recently identified as one of nature's most selective chelators for trivalent f-elements. Herein, we investigated the behavior of neptunium, americium, and curium in the presence of LanM, carbonate ions, and common minerals (calcite, montmorillonite, quartz, and kaolinite). We show that LanM's aqueous complexes with Am(III) and Cm(III) remain stable in carbonate-bicarbonate solutions. Furthermore, the sorption of Am(III) to these minerals is strongly impacted by LanM, while Np(V) sorption is not. With calcite, even a submicromolar concentration of LanM leads to a significant reduction in the Am(III) distribution coefficient (Kd, from >104 to ∼102 mL/g at pH 8.5), rendering it even more mobile than Np(V). Thus, LanM-type chelators can potentially increase the mobility of trivalent actinides and lanthanide fission products under environmentally relevant conditions. Monitoring biological chelators, including metalloproteins, and their biogenerators should therefore be considered during the evaluation of radioactive waste repository sites and the risk assessment of contaminated sites.


Asunto(s)
Elementos de Series Actinoides , Metaloproteínas , Quelantes , Elementos de Series Actinoides/química , Minerales , Carbonato de Calcio , Carbonatos
7.
Appl Opt ; 61(9): F47-F54, 2022 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-35333225

RESUMEN

Soil is a scattering medium that inhibits imaging of plant-microbial-mineral interactions that are essential to plant health and soil carbon sequestration. However, optical imaging in the complex medium of soil has been stymied by the seemingly intractable problems of scattering and contrast. Here, we develop a wavefront shaping method based on adaptive stochastic parallel gradient descent optimization with a Hadamard basis to focus light through soil mineral samples. Our approach allows a sparse representation of the wavefront with reduced dimensionality for the optimization. We further divide the used Hadamard basis set into subsets and optimize a certain subset at once. Simulation and experimental optimization results demonstrate our method has an approximately seven times higher convergence rate and overall better performance compared to that with optimizing all pixels at once. The proposed method can benefit other high-dimensional optimization problems in adaptive optics and wavefront shaping.


Asunto(s)
Óptica y Fotónica , Suelo , Simulación por Computador , Imagen Óptica
8.
Environ Sci Technol ; 56(3): 1994-2008, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35029104

RESUMEN

Imaging biogeochemical interactions in complex microbial systems─such as those at the soil-root interface─is crucial to studies of climate, agriculture, and environmental health but complicated by the three-dimensional (3D) juxtaposition of materials with a wide range of optical properties. We developed a label-free multiphoton nonlinear imaging approach to provide contrast and chemical information for soil microorganisms in roots and minerals with epi-illumination by simultaneously imaging two-photon excitation fluorescence (TPEF), coherent anti-Stokes Raman scattering (CARS), second-harmonic generation (SHG), and sum-frequency mixing (SFM). We used fluorescence lifetime imaging (FLIM) and time gating to correct CARS for the autofluorescence background native to soil particles and fungal hyphae (TG-CARS) using time-correlated single-photon counting (TCSPC). We combined TPEF, TG-CARS, and FLIM to maximize image contrast for live fungi and bacteria in roots and soil matrices without fluorescence labeling. Using this instrument, we imaged symbiotic arbuscular mycorrhizal fungi (AMF) structures within unstained plant roots in 3D to 60 µm depth. High-quality imaging was possible at up to 30 µm depth in a clay particle matrix and at 15 µm in complex soil preparation. TG-CARS allowed us to identify previously unknown lipid droplets in the symbiotic fungus, Serendipita bescii. We also visualized unstained putative bacteria associated with the roots of Brachypodium distachyon in a soil microcosm. Our results show that this multimodal approach holds significant promise for rhizosphere and soil science research.


Asunto(s)
Micorrizas , Suelo , Minerales , Rizosfera , Espectrometría Raman/métodos
9.
Sci Rep ; 12(1): 1218, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-35075234

RESUMEN

The overuse of antibiotics in clinical and livestock settings is accelerating the selection of multidrug resistant bacterial pathogens. Antibiotic resistant bacteria result in increased mortality and financial strain on the health care and livestock industry. The development of new antibiotics has stalled, and novel strategies are needed as we enter the age of antibiotic resistance. Certain naturally occurring clays have been shown to have antimicrobial properties and kill antibiotic resistant bacteria. Harnessing the activity of compounds within these clays that harbor antibiotic properties offers new therapeutic opportunities for fighting the potentially devastating effects of the post antibiotic era. However, natural samples are highly heterogenous and exhibit variable antibacterial effectiveness, therefore synthesizing minerals of high purity with reproducible antibacterial activity is needed. Here we describe for the first time synthetic smectite clay minerals and Fe-sulfide microspheres that reproduce the geochemical antibacterial properties observed in natural occurring clays. We show that these mineral formulations are effective at killing the ESKAPE pathogens (Enterococcus sp., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter sp., Pseudomonas aeruginosa and Enterobacter sp.) by maintaining Fe2+ solubility and reactive oxygen species (ROS) production while buffering solution pH, unlike the application of metals alone. Our results represent the first step in utilizing a geochemical process to treat antibiotic resistant topical or gastrointestinal infections in the age of antibiotic resistance.


Asunto(s)
Antibacterianos/síntesis química , Silicatos/síntesis química , Animales , Farmacorresistencia Bacteriana , Ratones , Pruebas de Sensibilidad Microbiana , Minerales , Células 3T3 NIH
10.
Environ Sci Technol ; 55(3): 1626-1636, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33471994

RESUMEN

Uranium contamination of soils and groundwater in the United States represents a significant health risk and will require multiple remediation approaches. Microbial phosphatase activity coupled to the addition of an organic P source has recently been studied as a remediation strategy that provides an extended release of inorganic P (Pi) into U-contaminated sites, resulting in the precipitation of meta-autunite minerals. Previous laboratory- and field-based biomineralization studies have investigated environments with relatively high U concentrations (>20 µM). However, most contaminated sites have much lower U concentrations (<2 µM). The Environmental Protection Agency (EPA) limit for U in drinking water is 0.126 µM. Reaching this regulatory limit becomes challenging as U concentrations approach autunite solubility. We studied the precipitation of U(VI)-phosphate minerals by an environmental isolate of Caulobacter sp. (strain OR37) from an Oak Ridge, Tennessee, U-contaminated site. Abiotic U(VI) solubility experiments reveal that U(VI)-phosphate minerals do not form in the presence of excess Pi (500 µM) when U(VI) concentrations are <1 µM and pH is <5. When OR37 cells are reacted under the same conditions with Pi or glycerol-2-phosphate, U(VI)-phosphate mineral formation was observed, along with the formation of intracellular polyphosphate granules. These results show that bacteria provide supersaturated microenvironments needed for U(VI)-phosphate mineralization while hydrolyzing organic P sources. This provides a pathway to lower U concentrations to below EPA limits for drinking water.


Asunto(s)
Caulobacter , Uranio , Biomineralización , Concentración de Iones de Hidrógeno , Fosfatos , Tennessee , Uranio/análisis
12.
Environ Sci Technol ; 52(11): 6448-6456, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29767970

RESUMEN

Natural organic matter is known to influence the mobility of plutonium (Pu) in the environment via complexation and reduction mechanisms. Hydroxamate siderophores have been specifically implicated due to their strong association with Pu. Hydroxamate siderophores can also break down into di and monohydroxamates and may influence the Pu oxidation state, and thereby its mobility. In this study we explored the reactions of Pu(VI) and Pu(V) with a monohydroxamate compound (acetohydroxamic acid, AHA) and a trihydroxamate siderophore desferrioxamine B (DFOB) at an environmentally relevant pH (5.5-8.2). Pu(VI) was instantaneously reduced to Pu(V) upon reaction with AHA. The presence of hydroxylamine was not observed at these pHs; however, AHA was consumed during the reaction. This suggests that the reduction of Pu(VI) to Pu(V) by AHA is facilitated by a direct one electron transfer. Importantly, further reduction to Pu(IV) or Pu(III) was not observed, even with excess AHA. We believe that further reduction of Pu(V) did not occur because Pu(V) does not form a strong complex with hydroxamate compounds at a circum-neutral pH. Experiments performed using desferrioxamine B (DFOB) yielded similar results. Broadly, this suggests that Pu(V) reduction to Pu(IV) in the presence of natural organic matter is not facilitated by hydroxamate functional groups and that other natural organic matter moieties likely play a more prominent role.


Asunto(s)
Plutonio , Deferoxamina , Ácidos Hidroxámicos , Oxidación-Reducción , Sideróforos
13.
J Pharmacol Exp Ther ; 365(3): 727-733, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29588339

RESUMEN

Selexipag [2-{4-[(5,6-diphenylpyrazin-2-yl)(isopropyl)amino]butoxy}-N-(methylsulfonyl)acetamide] is a selective nonprostanoid prostacyclin (PGI2) receptor (IP receptor) agonist that is approved for the treatment of pulmonary arterial hypertension (PAH). In contrast to selexipag, PGI2 analogs used in the clinic are nonselective agonists at prostanoid receptors and can also activate contractile prostaglandin E receptor 3 (EP3) receptors. Leg pain is a common side effect in patients receiving treatment with PGI2 analogs and peripheral vasoconstriction can be responsible for side effects related to muscular ischemia. This study tested the hypothesis that PGI2 analogs could cause paradoxical vasoconstriction of the femoral artery via EP3 receptor activation but that only vasorelaxation would be observed in response to selexipag and its active metabolite ACT-333679 [{4-[(5,6-diphenylpyrazin-2-yl)(isopropyl)amino]butoxy}acetic acid]. Selexipag and ACT-333679 relaxed rings of the isolated rat femoral artery contracted with either prostaglandin F2α (PGF2α ) or the α1 adrenoceptor (α1AR) agonist phenylephrine. ACT-333679 also inhibited contraction of the femoral artery to sympathetic nerve stimulation. In contrast, PGI2 analogs (iloprost, beraprost, and treprostinil) caused additional contraction of arterial rings precontracted with phenylephrine, which was reverted to relaxation by antagonism of EP3 receptors. Treprostinil augmented contraction of the femoral artery to sympathetic nerve stimulation in an EP3 receptor-dependent manner. Mechanistically, concomitant EP3 and α1AR receptor activation synergistically constricted femoral arteries. It is concluded that selexipag and ACT-333679 are vasorelaxants of the rat femoral artery and, unlike PGI2 analogs, do not cause paradoxical vasoconstriction via activation of EP3 receptors. EP3 receptor-mediated vasoconstriction may contribute to the well documented peripheral muscle pain reported in patients with PAH receiving PGI2 analogs. Leg pain may be less in patients treated with selexipag.


Asunto(s)
Acetamidas/farmacología , Epoprostenol/química , Epoprostenol/farmacología , Arteria Femoral/efectos de los fármacos , Arteria Femoral/fisiología , Pirazinas/farmacología , Receptores de Epoprostenol/agonistas , Vasoconstricción/efectos de los fármacos , Animales , Arteria Femoral/metabolismo , Masculino , Ratas , Ratas Wistar , Subtipo EP3 de Receptores de Prostaglandina E/metabolismo
14.
Artículo en Inglés | MEDLINE | ID: mdl-29226621

RESUMEN

Sphingosine-1-phosphate receptor 1 (S1P1 ) modulators sequester circulating lymphocytes within lymph nodes, thereby preventing potentially pathogenic autoimmune cells from exiting into the blood stream and reaching inflamed tissues. S1P1 receptor modulation may thus offer potential to treat various autoimmune diseases. The first nonselective S1P1-5 receptor modulator FTY720/fingolimod/Gilenya® has successfully demonstrated clinical efficacy in relapsing forms of multiple sclerosis. However, cardiovascular, hepatic, and respiratory side-effects were reported and there is a need for novel S1P1 receptor modulators with better safety profiles. Here, we describe the discovery of cenerimod, a novel, potent and selective S1P1 receptor modulator with unique S1P1 receptor signaling properties and absence of broncho- and vasoconstrictor effects ex vivo and in vivo. Cenerimod dose-dependently lowered circulating lymphocyte counts in rats and mice after oral administration and effectively attenuated disease parameters in a mouse experimental autoimmune encephalitis (EAE) model. Cenerimod has potential as novel therapy with improved safety profile for autoimmune diseases with high unmet medical need.


Asunto(s)
Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Inmunosupresores/administración & dosificación , Linfocitos/efectos de los fármacos , Oxadiazoles/administración & dosificación , Piridinas/administración & dosificación , Receptores de Lisoesfingolípidos/agonistas , Administración Oral , Animales , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Inmunosupresores/química , Inmunosupresores/farmacología , Recuento de Linfocitos , Ratones , Oxadiazoles/química , Oxadiazoles/farmacología , Piridinas/química , Piridinas/farmacología , Ratas , Receptores de Lisoesfingolípidos/metabolismo , Transducción de Señal/efectos de los fármacos
15.
Pharmacol Res Perspect ; 5(5)2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28805949

RESUMEN

The P2Y12 receptor is a validated target for prevention of major adverse cardiovascular events in patients with acute coronary syndrome. The aim of this study was to compare two direct-acting, reversible P2Y12 antagonists, ACT-246475 and ticagrelor, in a rat thrombosis model by simultaneous quantification of their antithrombotic efficacy and surgery-induced blood loss. Blood flow velocity was assessed in the carotid artery after FeCl3 -induced thrombus formation using a Doppler flow probe. At the same time, blood loss after surgical wounding of the spleen was quantified. Continuous infusions of ACT-246475 and ticagrelor prevented the injury-induced reduction of blood flow in a dose-dependent manner. High doses of both antagonists normalized blood flow and completely abolished thrombus formation as confirmed by histology. Intermediate doses restored baseline blood flow to ≥65%. However, ACT-246475 caused significantly less increase of blood loss than ticagrelor; the difference in blood loss was 2.6-fold (P < 0.01) at high doses and 2.7-fold (P < 0.05) at intermediate doses. Potential reasons for this unexpected difference were explored by measuring the effects of ACT-246475 and ticagrelor on vascular tone. At concentrations needed to achieve maximal antithrombotic efficacy, ticagrelor compared with ACT-246475 significantly increased carotid blood flow velocity in vivo (P = 0.003), induced vasorelaxation of precontracted rat femoral arteries, and inhibited contraction of femoral artery induced by electrical field stimulation or by phenylephrine. Overall, ACT-246475 showed a significantly wider therapeutic window than ticagrelor. The absence of vasodilatory effects due to high selectivity of ACT-246475 for P2Y12 provides potential arguments for the observed safety advantage of ACT-246475 over ticagrelor.

16.
J Pharmacol Exp Ther ; 362(1): 186-199, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28476928

RESUMEN

Prostacyclin (PGI2) receptor (IP receptor) agonists, which are indicated for the treatment of pulmonary arterial hypertension (PAH), increase cytosolic cAMP levels and thereby inhibit pulmonary vasoconstriction, pulmonary arterial smooth muscle cell (PASMC) proliferation, and extracellular matrix synthesis. Selexipag (Uptravi, 2-{4-[(5,6-diphenylpyrazin-2-yl)(isopropyl)amino]butoxy}-N-(methylsulfonyl)acetamide) is the first nonprostanoid IP receptor agonist, it is available orally and was recently approved for the treatment of PAH. In this study we show that the active metabolite of selexipag and the main contributor to clinical efficacy ACT-333679 (previously known as MRE-269) behaved as a full agonist in multiple PAH-relevant receptor-distal-or downstream-cellular assays with a maximal efficacy (Emax) comparable to that of the prototypic PGI2 analog iloprost. In PASMC, ACT-333679 potently induced cellular relaxation (EC50 4.3 nM) and inhibited cell proliferation (IC50 4.0 nM) as well as extracellular matrix synthesis (IC50 8.3 nM). In contrast, ACT-333679 displayed partial agonism in receptor-proximal-or upstream-cAMP accumulation assays (Emax 56%) when compared with iloprost and the PGI2 analogs beraprost and treprostinil (Emax ∼100%). Partial agonism of ACT-333679 also resulted in limited ß-arrestin recruitment (Emax 40%) and lack of sustained IP receptor internalization, whereas all tested PGI2 analogs behaved as full agonists in these desensitization-related assays. In line with these in vitro findings, selexipag, but not treprostinil, displayed sustained efficacy in rat models of pulmonary and systemic hypertension. Thus, the partial agonism of ACT-333679 allows for full efficacy in amplified receptor-distal PAH-relevant readouts while causing limited activity in desensitization-related receptor-proximal readouts.


Asunto(s)
Acetamidas/farmacología , Acetatos/farmacología , Proteínas Contráctiles/antagonistas & inhibidores , Contracción Muscular/efectos de los fármacos , Pirazinas/farmacología , beta-Arrestinas/metabolismo , Animales , Células CHO , Proliferación Celular/efectos de los fármacos , Cricetinae , Cricetulus , AMP Cíclico/metabolismo , Epoprostenol/análogos & derivados , Epoprostenol/farmacología , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Humanos , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/fisiopatología , Iloprost/farmacología , Masculino , Relajación Muscular/efectos de los fármacos , Ratas , Ratas Endogámicas SHR , Ratas Wistar , Receptores de Epoprostenol/agonistas
17.
Sci Rep ; 6: 19043, 2016 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-26743034

RESUMEN

Natural antibacterial clays, when hydrated and applied topically, kill human pathogens including antibiotic resistant strains proliferating worldwide. Only certain clays are bactericidal; those containing soluble reduced metals and expandable clay minerals that absorb cations, providing a capacity for extended metal release and production of toxic hydroxyl radicals. Here we show the critical antibacterial components are soluble Fe(2+) and Al(3+) that synergistically attack multiple cellular systems in pathogens normally growth-limited by Fe supply. This geochemical process is more effective than metal solutions alone and provides an alternative antibacterial strategy to traditional antibiotics. Advanced bioimaging methods and genetic show that Al(3+) misfolds cell membrane proteins, while Fe(2+) evokes membrane oxidation and enters the cytoplasm inflicting hydroxyl radical attack on intracellular proteins and DNA. The lethal reaction precipitates Fe(3+)-oxides as biomolecular damage proceeds. Discovery of this bactericidal mechanism demonstrated by natural clays should guide designs of new mineral-based antibacterial agents.


Asunto(s)
Silicatos de Aluminio/farmacología , Aluminio/farmacología , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos , Proteínas de Escherichia coli/antagonistas & inhibidores , Hierro/farmacología , Aluminio/química , Silicatos de Aluminio/química , Antibacterianos/química , Cationes Bivalentes , Arcilla , Farmacorresistencia Bacteriana/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Expresión Génica , Humanos , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/metabolismo , Concentración de Iones de Hidrógeno , Radical Hidroxilo/química , Radical Hidroxilo/metabolismo , Hierro/química , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/crecimiento & desarrollo , Pruebas de Sensibilidad Microbiana , Peloterapia/métodos , Oxidación-Reducción , Pliegue de Proteína/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crecimiento & desarrollo , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/genética , Salmonella typhimurium/crecimiento & desarrollo , Staphylococcus epidermidis/efectos de los fármacos , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/crecimiento & desarrollo
18.
J Med Chem ; 58(18): 7128-37, 2015 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-26291199

RESUMEN

Prostacyclin controls cardiovascular function via activation of the prostacyclin receptor. Decreased prostacyclin production occurs in several cardiovascular diseases. However, the clinical use of prostacyclin and its analogues is complicated by their chemical and metabolic instability. A medicinal chemistry program searched for novel nonprostanoid prostacyclin receptor agonists not subject to these limitations. A compound with a diphenylpyrazine structural core was synthesized. Metabolic stability and agonist potency were optimized through modification of the linear side chain. Compound 12b (MRE-269, ACT-333679) was identified as a potent and highly selective prostacyclin receptor agonist. Replacement of the terminal carboxyl group with an N-acylsulfonamide group yielded parent compound 26a (selexipag, NS-304, ACT-293987), which is orally active and provides sustained plasma exposure of 12b. Compound 26a was developed for the treatment of pulmonary arterial hypertension and shown to reduce the risk of the composite morbidity/mortality end point in a phase 3 event-driven clinical trial.


Asunto(s)
Acetamidas/química , Acetatos/química , Hipertensión Pulmonar/tratamiento farmacológico , Pirazinas/química , Receptores de Epoprostenol/agonistas , Acetamidas/farmacología , Acetamidas/uso terapéutico , Acetatos/farmacología , Acetatos/uso terapéutico , Administración Oral , Animales , Células CHO , Ensayos Clínicos Fase II como Asunto , Ensayos Clínicos Fase III como Asunto , Cricetulus , Perros , Método Doble Ciego , Haplorrinos , Humanos , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/fisiología , Inhibidores de Agregación Plaquetaria/química , Inhibidores de Agregación Plaquetaria/farmacología , Inhibidores de Agregación Plaquetaria/uso terapéutico , Arteria Pulmonar/citología , Pirazinas/farmacología , Pirazinas/uso terapéutico , Ensayos Clínicos Controlados Aleatorios como Asunto , Ratas , Relación Estructura-Actividad
19.
J Bacteriol ; 197(20): 3255-64, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26240069

RESUMEN

UNLABELLED: The AcrB protein of Escherichia coli, together with TolC and AcrA, forms a contiguous envelope conduit for the capture and extrusion of diverse antibiotics and cellular metabolites. In this study, we sought to expand our knowledge of AcrB by conducting genetic and functional analyses. We began with an AcrB mutant bearing an F610A substitution in the drug binding pocket and obtained second-site substitutions that overcame the antibiotic hypersusceptibility phenotype conferred by the F610A mutation. Five of the seven unique single amino acid substitutions--Y49S, V127A, V127G, D153E, and G288C--mapped in the periplasmic porter domain of AcrB, with the D153E and G288C mutations mapping near and at the distal drug binding pocket, respectively. The other two substitutions--F453C and L486W--were mapped to transmembrane (TM) helices 5 and 6, respectively. The nitrocefin efflux kinetics data suggested that all periplasmic suppressors significantly restored nitrocefin binding affinity impaired by the F610A mutation. Surprisingly, despite increasing MICs of tested antibiotics and the efflux of N-phenyl-1-naphthylamine, the TM suppressors did not improve the nitrocefin efflux kinetics. These data suggest that the periplasmic substitutions act by influencing drug binding affinities for the distal binding pocket, whereas the TM substitutions may indirectly affect the conformational dynamics of the drug binding domain. IMPORTANCE: The AcrB protein and its homologues confer multidrug resistance in many important human bacterial pathogens. A greater understanding of how these efflux pump proteins function will lead to the development of effective inhibitors against them. The research presented in this paper investigates drug binding pocket mutants of AcrB through the isolation and characterization of intragenic suppressor mutations that overcome the drug susceptibility phenotype of mutations affecting the drug binding pocket. The data reveal a remarkable structure-function plasticity of the AcrB protein pertaining to its drug efflux activity.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Sustitución de Aminoácidos , Antibacterianos/farmacología , Sitios de Unión , Cefalosporinas/metabolismo , Biología Computacional , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/antagonistas & inhibidores , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Mutación , Conformación Proteica
20.
J Bacteriol ; 197(15): 2479-88, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-25962916

RESUMEN

UNLABELLED: The constitutively expressed AcrAB multidrug efflux system of Escherichia coli shows a high degree of homology with the normally silent AcrEF system. Exposure of a strain with acrAB deleted to antibiotic selection pressure frequently leads to the insertion sequence-mediated activation of the homologous AcrEF system. In this study, we used strains constitutively expressing either AcrAB or AcrEF from their normal chromosomal locations to resolve a controversy about whether phenylalanylarginine ß-naphthylamide (PAßN) inhibits the activities of AcrAB and AcrEF and/or acts synergistically with antibiotics by destabilizing the outer membrane permeability barrier. Real-time efflux assays allowed a clear distinction between the efflux pump-inhibiting activity of PAßN and the outer membrane-destabilizing action of polymyxin B nonapeptide (PMXBN). When added in equal amounts, PAßN, but not PMXBN, strongly inhibited the efflux activities of both AcrAB and AcrEF pumps. In contrast, when outer membrane destabilization was assessed by the nitrocefin hydrolysis assay, PMXBN exerted a much greater damaging effect than PAßN. Strong action of PAßN in inhibiting efflux activity compared to its weak action in destabilizing the outer membrane permeability barrier suggests that PAßN acts mainly by inhibiting efflux pumps. We concluded that at low concentrations, PAßN acts specifically as an inhibitor of both AcrAB and AcrEF efflux pumps; however, at high concentrations, PAßN in the efflux-proficient background not only inhibits efflux pump activity but also destabilizes the membrane. The effects of PAßN on membrane integrity are compounded in cells unable to extrude PAßN. IMPORTANCE: The increase in multidrug-resistant bacterial pathogens at an alarming rate has accelerated the need for implementation of better antimicrobial stewardship, discovery of new antibiotics, and deeper understanding of the mechanism of drug resistance. The work carried out in this study highlights the importance of employing real-time fluorescence-based assays in differentiating multidrug efflux-inhibitory and outer membrane-destabilizing activities of antibacterial compounds.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/fisiología , Membrana Celular/fisiología , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Genes MDR/fisiología , Proteínas de Transporte de Membrana/fisiología , Animales , Antibacterianos/farmacología , Dipéptidos/farmacología , Farmacorresistencia Bacteriana Múltiple , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Genes MDR/genética , Humanos , Pruebas de Sensibilidad Microbiana , Permeabilidad , Fenotipo , Polimixina B/análogos & derivados , Polimixina B/farmacología , Conejos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...