Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 461, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802729

RESUMEN

BACKGROUND: Mentha longifolia L. is a perennial plant belonging to the Lamiaceae family that has a wide distribution in the world. M. longifolia has many applications in the food and pharmaceutical industries due to its terpenoid and phenolic compounds. The phytochemical profile and biological activity of plants are affected by their genetics and habitat conditions. In the present study, the content, constituents and antifungal activity of the essential oil extracted from 20 accessions of M. longifolia collected from different regions of Iran and Iraq countries were evaluated. RESULTS: The essential oil content of the accessions varied between 1.54 ± 0.09% (in the Divandarreh accession) to 5.49 ± 0.12% (in the Khabat accession). Twenty-seven compounds were identified in the essential oils of the studied accessions, which accounted for 85.5-99.61% of the essential oil. The type and amount of dominant compounds in the essential oil were different depending on the accession. Cluster analysis of accessions based on essential oil compounds grouped them into three clusters. The first cluster included Baziyan, Boukan, Sarouchavah, Taghtagh, Darbandikhan, Isiveh and Harir. The second cluster included Khabat, Kounamasi, Soni and Mahabad, and other accessions were included in the third cluster. Significant correlations were observed between the essential oil content and components with the climatic and soil conditions of the habitats. The M. longifolia essential oil indicated antifungal activity against Fusarium solani in both methods used. In all studied accessions, the fumigation method compared to the contact method was more able to control mycelia growth. In both methods, the inhibition percentage of essential oil on mycelia growth increased with an increase in essential oil concentration. Significant correlations were found between the essential oil components and the inhibition percentage of mycelium growth. CONCLUSION: The studied M. longifolia accessions showed significant differences in terms of the essential oil content and components. Differences in phytochemical profile of accessions can be due to their genetic or habitat conditions. The distance of the accessions in the cluster was not in accordance with their geographical distance, which indicates the more important role of genetic factors compared to habitat conditions in separating accessions. The antifungal activity of essential oils was strongly influenced by the essential oil quality and concentration, as well as the application method. Determining and introducing the elite accession in this study can be different depending on the breeder's aims, such as essential oil content, desired chemical composition, or antifungal activity.


Asunto(s)
Antifúngicos , Mentha , Aceites Volátiles , Fitoquímicos , Aceites Volátiles/farmacología , Aceites Volátiles/química , Irán , Antifúngicos/farmacología , Mentha/química , Irak , Fitoquímicos/química , Fitoquímicos/farmacología , Aceites de Plantas/farmacología , Aceites de Plantas/química , Fusarium/efectos de los fármacos
2.
Plants (Basel) ; 13(4)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38498519

RESUMEN

The Apiaceae family, known for aromatic plants producing bioactive essential oils (EOs), holds significance across sectors, including agrochemicals. This study evaluated the insecticidal potential of four Apiaceae EOs from Crithmum maritimum L., Trachyspermum ammi (L.) Sprague ex Turrill, Smyrnium olusatrum L., and Elwendia persica (Boiss.) Pimenov and Kljuykov against various significant storage pests (Sitophilus oryzae (L.), Trogoderma granarium Everts, Rhyzopertha dominica (F.), Tribolium castaneum (Herbst), T. confusum Jacquelin du Val, Oryzaephilus surinamensis (L.), Alphitobius diaperinus (Panzer), Acarus siro L., and Tenebrio molitor L.) on wheat. Insect mortality rates were monitored at intervals of 1, 2, 3, 4, 5, 6, and 7 days. Smyrnium olusatrum EO exhibited the highest efficacy, followed by T. ammi, C. maritimum, and E. persica EOs, although efficacy varied by species, developmental stage, and concentration. Notably, complete mortality occurred for several pests at 1000 ppm of S. olusatrum and T. ammi EOs. Gas chromatography-mass spectrometry (GC-MS) analysis revealed key compounds in these EOs, including myrcene, germacrone, and curzerene in S. olusatrum EO, and thymol, γ-terpinene, and p-cymene in T. ammi EO. These findings emphasize their potential as botanical insecticides. Smyrnium olusatrum and T. ammi EOs emerge as promising eco-friendly pest management options due to their efficacy, highlighted compound composition, and availability of biomass from both wild and cultivated sources.

3.
Sci Rep ; 14(1): 4818, 2024 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-38413642

RESUMEN

Sumac (Rhus coriaria L.) is one of the medicinal plants of Anacardiaceae family and widely used as a spice in Iran and Arab countries. Rhus coriaria var. zebaria is a small tree or large shrub, wildly growing in Iraq and described as a new variety with special characteristics. These increase the importance of studying sumac in these areas. Here, the phytochemical variations and the antibacterial activity of 50 accessions of this variety from five different climatic conditions was evaluated in order to identify the best accession to use and the best area for its cultivation. This is the most comprehensive study on this plant. Essential oil compounds were identified using GC-MS method and according to the results, Z, E-2,13-octadecadien, caryophyllene oxide, 2,4-decadienal, E-caryophyllene and nonanoic acid were among the main compounds. Also, the variety is a rich source of minerals including K, Ca, Mg, Na, P, and N. Sumac fruit extract from Akre Xerds had the highest anthocyanin and the lowest amount was from Kavilca region. The radical scavenging effect of extract from Dostic area in the concentration of 400 µg/mL is closer to the effect of ascorbic acid. The largest inhibition was found in the sumac extracted oil of Xasto Zhere area against S. aureus in compared with penicillin and amoxicillin and enrofloxacin antibiotics.


Asunto(s)
Antioxidantes , Rhus , Antioxidantes/farmacología , Rhus/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Irak , Staphylococcus aureus , Fitoquímicos/farmacología , Antibacterianos/farmacología
4.
Fitoterapia ; 174: 105875, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38417678

RESUMEN

Grapefruit mint (Mentha suaveolens × piperita) is a hybrid, perennial, and aromatic plant widely cultivated all over the world and used in the food, cosmetics, and pharmaceutical industries mostly for its valuable essential oil. Herein, we evaluated the anticancer activity of the grapefruit mint essential oil, cultivated in Iran. For the chemical composition analysis of essential oil, GC-MS was used. MTT assay was utilized for assessing the cytotoxic activity of the essential oil. The type of cell death was determined by annexin V/PI staining. Essential oil effect on the expression of maternally expressed gene 3 (MEG3), a regulatory lncRNA involved in cell growth, proliferation, and metastasis, was studied using qRT-PCR. Linalool (43.9%) and linalool acetate (40.1%) were identified as the dominant compounds of essential oil. Compared with MCF-7, the MDA-MB-231 cells were more sensitive to essential oil (IC50 = 7.6 µg/ml in MCF-7 and 5.9 µg/ml in MDA-MB-231 after 48 h). Essential oil induced cell death by apoptosis. Wound healing scratch assay confirmed the anti-invasive effect of essential oil. In addition, essential oil upregulated the tumor suppressor MEG3 in breast cancer cells. These results provide new insights into grapefruit mint essential oil potential application as an anticancer adjuvant in combination treatments for breast cancer patients.


Asunto(s)
Monoterpenos Acíclicos , Neoplasias de la Mama , Citrus paradisi , Mentha , Aceites Volátiles , Humanos , Femenino , Aceites Volátiles/farmacología , Aceites Volátiles/química , Mentha/química , Estructura Molecular , Neoplasias de la Mama/tratamiento farmacológico , Mentha piperita
5.
BMC Plant Biol ; 23(1): 380, 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37550621

RESUMEN

BACKGROUND: Oregano (Origanum vulgare L.), one of the important medicinal plants in the world, has valuable pharmacological compounds with antimicrobial, antiviral, antioxidant, anti-inflammatory, antispasmodic, antiurolithic, antiproliferative and neuroprotective activities. Phenolic monoterpenes such as thymol and carvacrol with many medical importance are found in Oregano essential oil. The biosynthesis of these compounds is carried out through the methyl erythritol-4 phosphate (MEP) pathway. Environmental stresses such as salinity might improve the secondary metabolites in medicinal plants. The influence of salinity stress (0 (control), 25, 50 and 100 mM NaCl) on the essential oil content, composition and expression of 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR), γ-terpinene synthase (Ovtps2) and cytochrome P450 monooxygenases (CYP71D180) genes involved in thymol and carvacrol biosynthesis, was investigated in two oregano subspecies (vulgare and gracile). RESULTS: Essential oil content was increased at low NaCl concentration (25 mM) compared with non-stress conditions, whereas it was decreased as salinity stress intensified (50 and 100 mM). Essential oil content was significantly higher in subsp. gracile than subsp. vulgare. The highest (0.20 mL pot-1) and lowest (0.06 mL pot-1) amount of essential oil yield was obtained in subsp. gracile at 25 and 100 mM NaCl, respectively. The content of carvacrol, as the main component of essential oil, decreased with increasing salinity level in subsp. gracile, but increased in subsp. vulgare. The highest expression of DXR, Ovtps2 and CYP71D180 genes was observed at 50 mM NaCl in subsp. vulgare. While, in subsp. gracile, the expression of the mentioned genes decreased with increasing salinity levels. A positive correlation was obtained between the expression of DXR, Ovtps2 and CYP71D180 genes with carvacrol content in both subspecies. On the other hand, a negative correlation was found between the expression of CYP71D180 and carvacrol content in subsp. gracile. CONCLUSIONS: The findings of this study demonstrated that both oregano subspecies can tolerate NaCl salinity up to 50 mM without significant reduction in essential oil yield. Also, moderate salinity stress (50 mM NaCl) in subsp. vulgare might increase the carvacrol content partly via increment the expression levels of DXR, Ovtps2 and CYP71D180 genes.


Asunto(s)
Aceites Volátiles , Origanum , Aceites Volátiles/metabolismo , Timol , Origanum/genética , Origanum/metabolismo , Cloruro de Sodio , Monoterpenos/metabolismo , Estrés Salino/genética
6.
BMC Plant Biol ; 23(1): 309, 2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-37296388

RESUMEN

Salinity, a severe worldwide issue, compromises the economic production of medicinal plants including mints and causes drug-yield decline. γ-Aminobutyric acid (GABA) is a tolerance-inducing signaling bio-molecule in various plant physiological processes. Pineapple mint (Mentha suaveolens Ehrh.) is a valuable medicinal herb with an exhilarating scent of citrus fruit. Piperitenone oxide is the major bioactive constituent of its essential oil, having significant demand by pharmaceutical industries. Nonetheless, modeling and optimizing the effective concentration of GABA remain within twin foci of interest. Therefore, a two factor-five level (NaCl 0-150 mM and GABA 0-2.4 mM) central composite design was conducted to model and optimize drug yield and physiological responses of M. suaveolens. Based on the design of experiments (DoE) approach, different linear, quadratic, cubic, and quartic models were assigned to the response variables. Change trends of shoot and root dry weights followed a simple linear model, whereas sophisticated models (i.e., multiple polynomial regression) were fitted to the other traits. NaCl stress inevitably reduced root and shoot dry weight, piperitenone oxide content, relative water content, pigments content, and maximum quantum yield of PSII. However, content of malondialdehyde (MDA) and total flavonoid, and DPPH radical scavenging activity were increased under salinity. Under severe NaCl stress (150 mM), the essential oil content (0.53%) was increased three times in comparison with control (0.18%). Optimization analysis demonstrated that the highest amount of essential oil (0.6%) and piperitenone oxide (81%) as a drug yield-determining component would be achievable by application of 0.1-0.2 mM GABA under 100 mM NaCl. The highest dry weight of root and shoot was predicted to be achieved at 2.4 mM GABA. Overall, extremely severe NaCl stress (i.e., more than 100 mM) in which a sharp drop in yield components value was observed seemed to be out of M. suaveolens salinity tolerance range. Hence, it is rationale to compensate the decrease of drug yield by foliar application of a dilute GABA solution (i.e., 0.1-0.2 mM) under 100 mM NaCl stress or lower levels.


Asunto(s)
Ananas , Mentha , Aceites Volátiles , Plantas Medicinales , Cloruro de Sodio/farmacología , Cloruro de Sodio/metabolismo , Mentha/química , Mentha/metabolismo , Aceites Volátiles/metabolismo , Óxidos/metabolismo
7.
Plants (Basel) ; 11(21)2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36365418

RESUMEN

Kelussia odoratissima Mozaff. is a medicinal species native to Iran. The goal of this research was to determine the environmental factors important for the distribution of K. doratissima in Iran using BMLR modeling. Six random transects were established throughout the species' habitat, and 220 quadrats with an area of 4 m2 were plotted. The canopy cover percentages of K. doratissima were estimated in each quadrat. Topographic factors, including elevation, slope, and aspect maps, were generated by creating DEM images. Land use, land evaluation, evaporation, temperature, and precipitation maps of the area were created accordingly. The data collected from the experiments were analyzed using the Minitab and R statistical packages. To determine the effect of the studied factors in the distribution of K. doratissima, we ran a set of backward multiple linear regressions. The results showed that the effects of evaporation, elevation, and slope were significant in the species' distribution, with elevation having a positive effect and evaporation and slope showing negative effects. Further, elevation had the highest effect on distribution (greatest absolute value of beta at 9.660). The next most significant factors in the plant's distribution were evaporation (beta = 8.282) and slope (beta = 0.807), respectively.

8.
Molecules ; 27(19)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36234832

RESUMEN

Heracleum persicum Desf. ex Fischer seeds are a rich source of essential oils (EOs) with high antimicrobial and antioxidant effects. In order to determine the phytochemical variability in various Iranian H. persicum populations, seed samples were collected from 10 different climatic locations. The current study indicated that hexyl butyrate (20.9-44.7%), octyl acetate (11.2-20.3%), hexyl-2-methylbutyrate (4.81-8.64%), and octyl 2-methyl butyrate (3.41-8.91%) were the major components of the EOs. The maximum (44.7%) and the minimum (20.9%) content of hexyl butyrate were obtained from Kaleibar and Sari populations, respectively. Moreover, the octyl acetate content ranged from 2% (in Mahdasht) to 20.3% in Torghabeh population. The CA and PCA analysis divided the 10 Iranian H. persicum populations into three major groups. Populations from Khanghah, Kaleibar, Shebeilo, Showt, Mahdasht, and Amin Abbad showed a distinct separation in comparison with the other populations, having high contents of hexyl butyrate (39.8%) and low contents of octyl acetate (13.5%) (Chemotype II). According to correlation analysis, the highest correlation coefficient was among habitat elevation and hexyl butyrate content. In addition, the mean annual precipitation was negatively correlated with the content of hexyl butyrate. Although octyl acetate content showed high correlation with soil EC and mean annual temperature, it was not statistically significant. In general, in order to have plants with a high content of hexyl butyrate, it is recommended to harvest these plants from regions with high altitude and low rainfall such as Kaleibar.


Asunto(s)
Antiinfecciosos , Heracleum , Aceites Volátiles , Acetatos , Antioxidantes , Butiratos , Heracleum/química , Irán , Aceites Volátiles/química , Suelo
9.
Antioxidants (Basel) ; 11(9)2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36139763

RESUMEN

Zinc (Zn) and copper (Cu) are essential micronutrients for the plant's growth, development, and metabolism, but in high concentrations, the elements disrupt normal metabolic processes. The present study investigated the effects of different concentrations (added to a Hogland-based solution) of zinc (control, 5, 10 mg L-1 ZnSO4) and copper (control, 0.1, 0.2 mg L-1 CuSO4) on the growth characteristics and biochemical indices of summer squash (Cucurbita pepo L.). Compared with control, a single application of Cu or Zn at both concentrations significantly declined fruit yield, growth traits, pigments content, and high content of these minerals and values of stress-related indices. Increased Cu concentration in the nutritional solutions reduced the activity of ascorbate peroxidase (APX) and guaiacol peroxidase (GPX). Copper at high concentrations intensified ROS production, aggravated oxidative stresses, and decreased the plant yield and productivity. Nonetheless, combining Cu and Zn could alleviate stress intensity by boosting antioxidant enzymes, redox regulation, and a resultant diminishment in the content of H2O2, proline, malondialdehyde, and minerals. The obtained results corroborate that the co-application of zinc in Cu-contaminated areas can improve the plant's economic yield and physiological parameters by hindering copper toxicity and enhancing the photosynthetic capacity.

10.
Plants (Basel) ; 11(13)2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35807610

RESUMEN

Drought stress is known as a major yield-limiting factor in crop production that threatens food security worldwide. Arbuscular mycorrhizal fungi (AMF) and titanium dioxide (TiO2) have shown to alleviate the effects of drought stress on plants, but information regarding their co-addition to minimize the effects of drought stress on plants is scant. Here, a two-year field experiment was conducted in 2019 and 2020 to evaluate the influence of different irrigation regimes and fertilizer sources on the EO quantity and quality of sage (Salvia officinalis L.). The experiment was laid out as a split plot arranged in a randomized complete block design with three replicates. The irrigation treatments were 25, 50, and 75% maximum allowable depletion (MAD) percentage of the soil available water as non-stress (MAD25), moderate (MAD50), and severe (MAD75) water stress, respectively. Subplots were four fertilizer sources including no-fertilizer control, TiO2 nanoparticles (100 mg L-1), AMF inoculation, and co-addition of TiO2 and AMF (TiO2 + AMF). Moderate and severe drought stress decreased sage dry matter yield (DMY) by 30 and 65%, respectively. In contrast, application of TiO2 + AMF increased DMY and water use efficiency (WUE) by 35 and 35%, respectively, compared to the unfertilized treatment. The highest EO content (1.483%), yield (2.52 g m-2), and cis-thujone (35.84%, main EO constituent of sage) was obtained in MAD50 fertilized with TiO2 + AMF. In addition, the net income index increased by 44, 47, and 76% with application of TiO2 nanoparticles, AMF, and co-addition of TiO2 + AMF, respectively. Overall, the integrative application of the biofertilizer and nanoparticles (TiO2 + AMF) can be recommended as a sustainable strategy for increasing net income and improving EO productivity and quality of sage plants in drought stress conditions. Future policy discussions should focus on incentivizing growers for replacing synthetic fertilizers with proven nano and biofertilizers to reduce environmental footprints and enhance the sustainability of sage production, especially in drought conditions.

11.
Antioxidants (Basel) ; 11(5)2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35624730

RESUMEN

Mint species are one of the most traded medicinal plants with a wide array of applications in the food, pharmaceutical, and perfumery industries. Here, a field experiment based on completely randomized block design (RCBD) aimed to compare drug yield, antioxidant properties, and essential-oil (EO) quality of three newly introduced mints (i.e., ginger mint, pineapple mint, and grapefruit mint) with a chiefly cultivated one (i.e., peppermint). The results manifested that dry-weight yield and EO yield of grapefruit mint (310 g/m2 and 5.18 g/m2, respectively) was approximately 2 times more than that of others. The highest EO content (i.e., 3.12%, v/w)) was obtained from the ginger mint; however, there were no significant differences among the other three mints. The highest total flavonoids content and 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity of both methanolic and ethanolic extracts were found in pineapple and grapefruit mint. Methanolic extract of ginger mint yielded the highest total polyphenol content, whereas the ethanolic extract of pineapple mint showed the highest total polyphenol content. According to mean comparisons, the EO of ginger mint exhibited the highest antioxidant activity (EC50 value = 2.23 µL/mL), while EO of peppermint showed the lowest antioxidant activity (EC50 value = 48.23 µL/mL). Gas chromatography analysis identified four EO types among these mints: (i) grapefruit mint EO rich in linalool (51.7%) and linalyl acetate (28.38%); (ii) ginger mint EO rich in linalool (59.16%); (iii) pineapple mint EO rich in piperitone oxide (77.65%); and (iv) peppermint EO rich in menthol (35.65%). The findings of the present study provide new insights into the cultivation of preferable mints possessing desired characteristics for food and drug industries.

12.
Plants (Basel) ; 11(10)2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35631809

RESUMEN

The present study examined the effects of foliar spray of selenium nanoparticles (0, 10 and 20 mg/L) on the yield, phytochemicals and essential oil content and composition of pineapple mint (Mentha suaveolens Ehrh.) under salinity stress (0, 30, 60 and 90 mM NaCl). Obtained results demonstrated that severe salinity stress reduced the fresh weight (FW) and plant height (PH) by 16.40% and 19.10%, respectively compared with normal growth condition. On the other hands, under sever salinity stress relative water content (RWC) and chlorophyll index were reduced by 18.05% and 3.50%, respectively. Interestingly, selenium nanoparticles (Se-NPs; 10 mg/L) application improved the pineapple mint growth. Based on GC-FID and GC-MS analysis, 19 compounds were identified in pineapple mint essential oil. Foliar application of Se-NPs and salinity did not change the essential oil content of pineapple mint, however, the essential oil compounds were significantly affected by salinity and Se-NPs- applications. Foliar application of Se-NPs- had a significant effect on piperitenone oxide, limonene, jasmone, viridiflorol and ß-myrsene under different salinity levels. The highest percentage of piperitenone oxide (79.4%) as the major essential oil component was recorded in the no salinity treatment by applying 10 mg/L of nanoparticle. Interestingly, application of 10 mg L-1 Se-NPs- under 60 mM NaCl increased the piperitenone oxide content by 9.1% compared with non-sprayed plants. Finally, the obtained results demonstrated that foliar application of Se-NPs (10 mg L-1) can improve the pineapple mint growth and secondary metabolites profile under saline conditions.

13.
Antibiotics (Basel) ; 11(4)2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35453199

RESUMEN

The antimicrobial activity of several essential oils (EOs) and their related microemulsions (MEs) was investigated. EOs were obtained from Cannabis sativa L. cv CS (C. sativa), Carum carvi L. (C. carvi), Crithmum maritimum L. (C. maritimum), Cuminum cyminum L. (C. cyminum), x Cupressocyparis leylandii A.B. Jacks & Dallim. (C. leylandii), Cupressus arizonica Greene (C. arizonica), Ferula assa-foetida L. (F. assa-foetida)., Ferula gummosa Boiss. (F. gummosa), Juniperus communis L. (J. communis), Juniperus x pfitzeriana (Spath) P.A. Schmidt (J. pfitzeriana), Pimpinella anisum L (P. anisum). Preliminary screening revealed that Cuminum cyminum, Crithmum maritimum, and Pimpinella anisum (10% v/v) were effective against all tested microorganisms (Escherichia coli ATCC 35218, Listeria monocytogenes ATCC 7644, Staphylococcus aureus ATCC 29213, Pseudomonas fluorescens DSM 4358, and Candida albicans ATCC 10231), with growth inhibition diameter from 10 to 25 mm. These EOs were used to formulate the MEs with an average size < 50 nm and a good stability over 30 days. EOs' antimicrobial activity was further enhanced in the MEs, with a generalized lowering of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values. C. cyminum-ME reached, in most cases, MIC two times lower (0.312%) than the corresponding EO (0.625%) and even eight times lower against S. aureus (0.156 vs. 1.25%). A more remarkable microbicide effect was noted for C. cyminum-ME, with MBC values eight times lower (from 0.312 to 0.625%) than the corresponding EO (from 2.5 to 5%). Overall, MEs resulted in an efficient system for EOs encapsulation, enhancing solubility and lowering concentration to exert antimicrobial efficacy.

14.
Sci Rep ; 12(1): 5813, 2022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35388099

RESUMEN

Oregano (Origanum vulgare L.) is a rich source of biologically active components such as phenolic compounds. Here, seven pot grown O. vulgare accessions belonging to three subspecies (subsp. virens, subsp. vulgare and subsp. gracile) were investigated for their content in sixteen bioactive phenolic compounds as well as their antioxidant capacities (DPPH• and FRAP tests), total phenolic content (TPC) and total flavonoid content (TFC) in order to identify the most suitable ones on an industrial level. HPLC analyses showed that rosmarinic acid (659.6-1646.9 mg/100 g DW) was by far the most abundant constituent, followed by luteolin (46.5-345.4 mg/100 g DW), chicoric acid (36.3-212.5 mg/100 g DW), coumarin (65.7-193.9 mg/100 g DW) and quercetin (10.6-106.1 mg/100 g DW), with variability in concentration depending on the accession and subspecies. The highest level of rosmarinic acid and TPC was obtained from Ardabil accession (subsp. virens). There was a significant and positive correlation between rosmarinic acid and antioxidant activity (r = 0.46). TFC significantly correlated to TPC (r = 0.57) as well as to chicoric acid (r = 0.73). Cluster (CA) and principal component (PCA) analyses classified the investigated accessions in three different groups. Such natural variabilities in phenolics provide the possibility of using elite plants for nutraceutical and pharmaceutical industries and domestication of highly antioxidative accessions of oregano.


Asunto(s)
Origanum , Antioxidantes/análisis , Flavonoides , Fenoles/análisis , Extractos Vegetales
15.
Food Chem ; 374: 131757, 2022 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-34920406

RESUMEN

The current study screened the oil content, fatty acids profile, and antioxidant properties of twelve Iranian sumac fruit accessions. The oil contents were variable among the investigated populations (ranging from 5.15 to 16.70%). Oleic acid (32.3-47.41%), palmitic acid (18.90-36.29%), and linoleic acid (10.31-35.39%) were the predominant fatty acids in the oil samples. According to principal component and cluster analysis, sumac germplasms were categorized into three groups: i.e., group I (five populations rich in linoleic acid), group II (four populations rich in oleic acid), group III (three populations rich in palmitic acid). The highest fruits weight, oil percentage, and linoleic acid content was obtained from Arasbaran population. Arasbaran population possessed the highest ∑PUSFA (i.e, 34.53%) and ∑UNSFA: ∑SFA ratio. Meanwhile, Paveh population possessed the highest antioxidant attributes. Such variabilities provide the possibility of using elite populations containing a high ratio of unsaturated fatty acids and antioxidant compounds in the food industry.


Asunto(s)
Rhus , Antioxidantes , Ácidos Grasos , Industria de Alimentos , Frutas , Irán
16.
Plants (Basel) ; 10(11)2021 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-34834832

RESUMEN

Satureja khuzistanica Jamzad is a valuable and endemic medicinal plant. Boron and zinc are essential elements for the vegetative and reproductive growth of plants and have significant effects on yield, essential oil composition and the seed production of plants. To investigate the effects of the foliar application of zinc and boron on the growth, yield, seed production and phytochemical properties of S. khuzistanica, a study was conducted in a factorial experiment with three replicates in two consecutive years based on a randomized complete block design. The foliar application of boron (B) at three concentrations (control or distilled water, 0.4% and 0.8% as H3BO3) and zinc (Zn) at three concentrations (control or distilled water, 0.3% and 0.6% as ZnSO4) was carried out. Our results showed that the foliar application of B resulted in a significant increase in the fresh and dry weights of plants, the dry weight of stems, drug yield, seed yield, seed germination and 1000-seed weight. At the same time, the application of B resulted in a significant decrease in seed emptiness. The fresh and dry weights of plants, drug yield, seed yield, 1000-seed weight and seed germination were also significantly improved by Zn foliar spraying compared to the control. Application of 0.8% B resulted in a significant decrease in seed emptiness by 14.16% and 22.37%, as compared to the control. The foliar spraying of B and Zn improved the total phenolic content, the essential oil content and the yield and antioxidant activity of S. khuzistanica. Moreover, B application generally concentrated more carvacrol in the essential oil (in the first experimental year). In contrast, no significant differences were observed between Zn treatments in carvacrol content and total flavonoids. The use of several microelements, such as B and Zn, could improve both the quantity and quality of S. khuzistanica. Additionally, improvement of seed set and seed quality by the foliar spraying of Zn and B may be useful for growing plants in arid and semi-arid areas.

17.
Pharmaceuticals (Basel) ; 14(8)2021 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-34451913

RESUMEN

Ajowan (Trachyspermum ammi L.) is a spice traditionally used in Middle Eastern medicine and contains a valuable essential oil (EO) exploited in different fields, such as pharmaceutics, agrochemicals and food additives. This EO is mostly characterized by the thymol to which most of its biological properties are related. Given the economic value of ajowan and its increasing demand across the globe, the extraction method used for its EO is of paramount importance in terms of quality and quantity of the final product. In the present study, we used the design of experiment (DoE) approach to study and optimize the extraction of the ajowan EO using the microwave-assisted extraction (MAE), a novel extraction technique with high efficiency, low energy consumption, short process length and low environmental impact. A two-step DoE (screening followed by surface response methodology) was used to reduce the number of experiments and to improve the cost/benefit ratio. Reliable mathematical models, relating the more relevant EO features with the extraction conditions, were obtained and used to identify the best experimental conditions able to maximize the yield and thymol concentration. The optimized MAE procedure assures an EO with a higher yield and thymol amount compared with the standard hydrodistillation procedure.

18.
Sci Rep ; 11(1): 15279, 2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34315968

RESUMEN

Intercropping of medicinal plants/legumes along with bio-fertilizer application is a relatively new sustainable practice for improving the yield and secondary metabolites production. Here, a 2-years field experiment was performed to evaluate the effects of water deficit stress and arbuscular mycorrhizal fungi (AMF) application (as bio-fertilizer) on nutrients concentration, dry matter yield, essential oil quantity and quality of thyme in intercropping with soybean. Three irrigation levels, including (i) irrigation after depletion of 20% (I20) as non-stressed, 50% (I50) as moderate water deficit and 80% (I80) available water as severe water deficit were applied as the main factor. The sub-factor was represented by different cropping patterns including thyme sole culture, replacement intercrop ratio of 50:50 and 66:34 (soybean: thyme) and the third factor was non-usage (control) and usage of AMF. According to our results, the thyme dry yield under moderate and severe water deficit stress decreased by 35 and 44% in the first year, and by 27 and 40% in the second year compared with non-stressed (I20) plants, respectively. Also, the macro- and micro-nutrients of thyme leaves increased significantly in intercropping patterns after application of AMF. The maximum essential oil percentage of thyme was achieved in 50:50 intercropping ratio treated with AMF. Under moderate and severe water deficits, the major constituents of thyme essential oil including thymol, p-cymene and γ-terpinene were increased in intercropping patterns treated with AMF. Generally, AMF application in intercropping ratio of 50:50 may be proposed to farmers as an eco-friendly approach to achieve desirable essential oil quality and quantity in thyme under water deficit stress conditions.


Asunto(s)
Productos Agrícolas , Deshidratación/metabolismo , Hongos/fisiología , Glycine max/metabolismo , Thymus (Planta)/metabolismo , Aceites Volátiles/metabolismo , Hojas de la Planta/metabolismo , Raíces de Plantas/microbiología , Glycine max/crecimiento & desarrollo , Glycine max/microbiología , Thymus (Planta)/crecimiento & desarrollo
19.
Nat Prod Res ; 35(15): 2588-2592, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31651198

RESUMEN

Stachys pilifera Benth is an endemic species of Iran where it is found in the mountainous habitats of Zagros region. The plant is a rich source of secondary metabolites endowed with different medicinal properties. Here, for the first time, the essential oil variability among eleven wild populations of S. pilifera, was investigated. Results indicated that the variation of the chemical profile of essential oils was remarkable. The most abundant components were cis-chrysanthenyl acetate (19.1-48.2%), viridiflorol (1.4-19.1%), trans-caryophyllene (2.3-11.9%), caryophyllene oxide (1.9-11.0%), limonene (2.0- 5.9%) and spathulenol (0.0- 9.5). Based on the cluster analyses (CA), four main chemotypes were recognized: chemotype I (cis-chrysanthenyl acetate), chemotype II (cis-chrysanthenyl acetate/viridiflorol), chemotype III (cis-chrysanthenyl acetate/viridiflorol/spathulenol), chemotype IV (cis-chrysanthenyl acetate/trans-caryophyllene/α-pinene). The chemical variation detected can be useful to consider these populations for pharmaceutical industries and industrial applications as well as for domestication and conservation purposes.


Asunto(s)
Limoneno/química , Aceites Volátiles , Stachys , Irán
20.
Food Chem ; 333: 127433, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-32659662

RESUMEN

This study examined the effects of exogenous citrulline (control, 1 and 2 mM) and water availability (100%, 50% and 25% WA) on antioxidant attributes and essential oil constituents of Hyssopus officinalis L. in two successive harvests. Hyssop tolerantly responded to water deficiency by well-promoted antioxidant enzymes (i.e., superoxide dismutase, and catalase), strong DPPH-scavenging activity, and increasing polyphenols; however, the essential oil content was negatively reduced by water stress. External citrulline further increased the activity of antioxidant enzymes. Citrulline application at 2 mM under severe water stress could also improve essential oil (EO) content in the first and second harvests by about 15 and 30%, respectively. Furthermore, under severe drought, citrulline at 2 mM could obtain the highest yield of isopinocamphone (47%) as the main component of EO. The results showed the high potential of this novel applied metabolite agent to be used in a well-fulfilled production of this medicinal plant.


Asunto(s)
Antioxidantes/metabolismo , Citrulina/farmacología , Hyssopus/efectos de los fármacos , Hyssopus/fisiología , Aceites Volátiles/metabolismo , Canfanos/metabolismo , Catalasa/metabolismo , Catecol Oxidasa/metabolismo , Deshidratación , Sequías , Hyssopus/química , Aceites Volátiles/análisis , Proteínas de Plantas/metabolismo , Plantas Medicinales/efectos de los fármacos , Plantas Medicinales/fisiología , Polifenoles/metabolismo , Superóxido Dismutasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...