Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Environ Sci (China) ; 126: 408-422, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36503768

RESUMEN

A series of organic compounds were successfully immobilized on an N-doped graphene quantum dot (N-GQD) to prepare a multifunctional organocatalyst for coupling reaction between CO2 and propylene oxide (PO). The simultaneous presence of halide ions in conjunction with acidic- and basic-functional groups on the surface of the nanoparticles makes them highly active for the production of propylene carbonate (PC). The effects of variables such as catalyst loading, reaction temperature, and structure of substituents are discussed. The proposed catalysts were characterized by different techniques, including Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy/energy dispersive X-ray microanalysis (FESEM/EDX), thermogravimetric analysis (TGA), elemental analysis, atomic force microscopy (AFM), and ultraviolet-visible (UV-Vis) spectroscopy. Under optimal reaction conditions, 3-bromopropionic acid (BPA) immobilized on N-GQD showed a remarkable activity, affording the highest yield of 98% at 140°C and 106 Pa without any co-catalyst or solvent. These new metal-free catalysts have the advantage of easy separation and reuse several times. Based on the experimental data, a plausible reaction mechanism is suggested, where the hydrogen bonding donors and halogen ion can activate the epoxide, and amine functional groups play a vital role in CO2 adsorption.


Asunto(s)
Carbono , Grafito , Nitrógeno , Dióxido de Carbono , Carbonatos , Compuestos Epoxi
2.
J Hazard Mater ; 366: 229-239, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30530014

RESUMEN

A new synthesis strategy was adopted to convert cellulose to a biodegradable sorbent with properties of very high oil absorption and retention capacities, excellent oil-water selectivity, good mechanical strength and recycling ability. The sorbent in form of a hydrophobic/oleophilic nano-structured aerogel was prepared through functionalizing cotton cellulose with low surface energy moieties followed by dissolving and chemically cross-linking the product in an organic medium (DMSO), and freeze-drying. High absorption capacities of 40.7, 57.1, and 47.3 g/g were achieved for three different light crude oils at 25 °C which is comparable with most synthetic oil sorbents. Washburn's model was utilized to describe the wicking dynamics and fluid flow through the pores and to evaluate the effects of all important factors on the sorption process. Via comparing the experimental data with the predictions made by the model, it was revealed that unlike other cellulose-based oil sorbents reported in the literature, the swelling of fibrous network in the synthesized aerogel plays an important role in the absorption process besides the capillary pressure, resulting in a very good oil retention capacity and at the same time lowering the absorption rate, especially for viscose organic liquids.


Asunto(s)
Celulosa/química , Geles/química , Nanoestructuras , Contaminación por Petróleo/prevención & control , Petróleo/análisis
3.
Appl Biochem Biotechnol ; 178(5): 974-89, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26588921

RESUMEN

Surface modification of multiwalled carbon nanotubes (MWCNTs) through functionalization could improve the characteristics of these nanomaterials as support for enzymes. Carboxylation of MWCNTs (MWCNT-COOH) has been carried out in this study using the dielectric barrier discharge (DBD) plasma reactor through humidified air. The chemical method was also used for further functionalization of the MWCNT-COOH through which the amidation of the surfaces with either butylamine (MWCNT-BA) or octadecylamine (MWCNT-OA) was performed. By immobilization of Candida antarctica B lipase (CALB) on these nanoparticles, performance of the immobilized enzyme in catalyzing methanolysis of rapeseed oil was evaluated. The CALB loading on the MWCNT-BA and MWCNT-COOH was 20 mg protein/g, while the value for MWCNT-OA was 11 mg protein/g. The yield of biodiesel was determined as percentage of mass of fatty acid methyl ester (FAME) produced per initial mass of the oil, and the yield value for the two of these three supports namely, MWCNT-COOH and MWCNT-BA used for the CALB immobilization was similar at about 92 %, while 86 % was the yield for the reaction catalyzed by the lipase immobilized on MWCNT-OA. Thermal stability of the immobilized CALB and the catalytic ability of the enzyme in the repeated batch experiments have also been determined.


Asunto(s)
Biocombustibles , Candida/enzimología , Enzimas Inmovilizadas/metabolismo , Ácidos Grasos Monoinsaturados/metabolismo , Proteínas Fúngicas/metabolismo , Lipasa/metabolismo , Metano/metabolismo , Nanotubos de Carbono , Cromatografía de Gases , Microscopía Electrónica de Transmisión , Gases em Plasma , Aceite de Brassica napus , Solventes , Temperatura
4.
J Hazard Mater ; 271: 120-30, 2014 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-24632365

RESUMEN

A model diesel fuel containing 250 ppmw sulfur (as dibenzothiophene) in n-hexadecane was desulfurized at low temperatures in absence of hydrogen, down to about zero ppmwS on a novel adsorbent of well dispersed 3-12 nm Nix-Cu10-x (x=Ni wt%) nanoparticles formed by impregnation on γ-Al2O3 and reduced in H2 at 275 or 450°C. The sorbents were characterized by XRD, TEM-EDX, FESEM-EDS, H2-TPR, TPO, BJH and BET surface area measurement techniques. Effects of various parameters comprising Cu content, reduction and desulfurization temperatures, inhibition by naphthalene, and regeneration of spent sorbents were investigated. As copper is added to nickel: (a) the sorbent reduction temperature shifts to dramatically lower values, (b) sulfur adsorption capacity of the sorbents at lower reduction and desulfurization temperatures is significantly improved, and when 14 wt% Ni5Cu5 sorbent is added to the fuel, the sulfur content reduces from 250 ppmwS to about zero in less than 1 min, (c) loss of adsorption capacity after the regeneration of the spent sorbent reduced at 275°C is significantly diminished, and (d) the selectivity of the sorbents to dibenzothiophene in the presence of naphthalene is improved. A higher reduction temperature tends to agglomerate nickel nanoparticles and reduce the sulfur adsorption capacity.


Asunto(s)
Óxido de Aluminio/química , Cobre/química , Gasolina , Nanopartículas del Metal/química , Níquel/química , Tiofenos/química , Adsorción , Contaminación del Aire/prevención & control , Hidrógeno , Azufre/química , Temperatura
5.
Langmuir ; 29(46): 14135-46, 2013 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-24131407

RESUMEN

The effects of surface acidity and basicity of metal oxide nanoparticles on the thermodynamics of asphaltene adsorption were studied. Three different categories of metal oxides/salts with acidic (WO3 and NiO), amphoteric (Fe2O3 and ZrO2), and basic (MgO and CaCO3) surfaces were synthesized, and their textural, structural, and acid-base properties were characterized. Asphaltenes were extracted from a dead oil sample and characterized by X-ray powder diffraction and Fourier transform infrared spectroscopy. The acid and base numbers of the asphaltenes were measured. The nanoparticles were added to the asphaltene-toluene solutions, and the amount of adsorbed asphaltene was obtained through centrifugation followed by UV-vis spectroscopy of the supernatant liquid and temperature-programmed oxidation analysis of the precipitated solid. The concentrations of organic acid and base groups in the asphaltenes are 2.75 and 12.34 mg of KOH/g, respectively, indicating that the asphaltenes are more basic in nature. Isotherms of the asphaltene adsorption onto the six metal oxides/salts fit the Langmuir model closely. The asphaltene adsorption capacity of the nanoparticles is 1.23-3.67 mg/m(2) and decreases in the order of NiO > Fe2O3 > WO3 > MgO > CaCO3 > ZrO2, concomitant with the synergetic effects of acidity and the net charge of the surfaces. High-resolution transmission electron microscopy illustrates that the asphaltenes are spread out over the surfaces with no short-range/long-range order. The adsorption of the asphaltenes onto the six samples is exothermic and spontaneous with the Gibbs energy change of -27.80 to -28.79 kJ/mol at 25 °C. The absolute value of the enthalpy change of the adsorption is calculated to be within the range of 5-20 kJ/mol. Acid-base interaction and electrostatic attraction seem to be the dominant forces contributing to the adsorption of the asphaltenes onto the metal oxide/salt surfaces.

6.
J Environ Sci (China) ; 25(12): 2498-506, 2013 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-24649683

RESUMEN

Series of mixed metal oxides were synthesized by gel-combustion method and their catalytic activities for soot oxidation were investigated. The catalysts were M-Ce-Zr (M = Mn, Cu, Fe, K, Ba, Sr), and xK-20Mn-Ce-Zr (x = 0, 5, 10, 20), they were characterized by XRD, SEM, TPR and BET surface area techniques. The results of soot temperature programmed oxidation (TPO) in an O2 oxidizing atmosphere indicate that K-Ce-Zr has the highest catalytic activity for soot oxidation under loose contact condition, due to enhancement of the soot and catalyst contacts. On the other hand, under a tight contact condition, Mn-Ce-Zr and Cu-Ce-Zr nano-composites have high activities for soot oxidation and lower the soot TPO peak temperatures by about 280 and 270 degrees C, respectively, as compared to non-catalytic soot oxidation. Furthermore, the addition of up to 10 wt.% potassium oxides into Mn-Ce-Zr increases its catalytic activity and further reduces the soot TPO peak temperature by about 40 degrees C under loose contact condition.


Asunto(s)
Contaminación del Aire/prevención & control , Cerio/química , Hollín/química , Circonio/química , Catálisis , Oxidación-Reducción , Temperatura , Emisiones de Vehículos
7.
J Colloid Interface Sci ; 393: 291-9, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23201063

RESUMEN

VO(x)-MWCNTs nanocomposite was prepared via deposition-precipitation method followed by microwave treatment. Platinum nanoparticles were dispersed via polyol process over the nanocomposite support, and thus, prepared electro-catalyst was employed in methanol electro-oxidation reaction. The electro-catalysts were characterized by means of TGA, XRD, EDS, FESEM, TEM, and H(2)-TPR analysis. The electro-catalytic activity and stability of the electrodes toward methanol oxidation reaction in acidic medium were studied by using cyclic voltammetry (CV), CO-stripping, and electrochemical impedance spectroscopy (EIS) techniques. Compared to the Pt/MWCNTs, the Pt/VO(x)-MWCNTs electro-catalyst not only exhibits high electro-catalytic activity, but also shows very good stability during methanol electro-oxidation reaction. In addition, the presence of VO(x) in the composite support dramatically increases the electrochemical active surface area of platinum nanoparticles. The results of electrochemical impedance spectroscopy reveal that formation kinetics of adsorbed hydroxyl group on surface of the electro-catalysts is improved upon vanadium oxide addition to the support. This phenomenon is very helpful to facilitate oxidative removal of adsorbed CO group through bifunctional mechanism on Pt/VO(x)-MWCNTs.


Asunto(s)
Nanopartículas del Metal/química , Metanol/química , Nanotubos de Carbono/química , Óxidos/química , Platino (Metal)/química , Vanadio/química , Catálisis , Técnicas Electroquímicas , Oxidación-Reducción , Tamaño de la Partícula , Propiedades de Superficie
8.
J Nanosci Nanotechnol ; 10(9): 6003-8, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21133139

RESUMEN

A novel technique of chloride solution combustion synthesis (CSCS) is employed for preparation of SnO2 nanoparticles, using SnCl4 and sorbitol as a novel precursor and a fuel, respectively. Ammonium nitrate is also used as a combustion aid. The solution combustion synthesis is a single-step and simple method for nanoparticles synthesis. However, it commonly uses nitrate precursors. In this study tin chloride is used in CSCS method for the first time, employing ammonium nitrate as a combustion aid. The nanoparticles are characterized by means of XRD, SEM, EDS and BET and applied in sensing of carbon monoxide and methane. The molar ratio of fuel plus oxidant to SnCl4 (psi) and the ratio of fuel-to-oxidant (phi) were varied in the modified CSCS technique. The smallest nanoparticles size, i.e., 3.9 nm with 220 m2 x g(-1) obtained at phi = 1 and psi = 1. The sensor fabricated based on the SnO2 nanoparticles obtained by CSCS method shows 2-3 times higher sensitivity to CO than the one obtained by the conventional sol-gel method. The CSCS sensors show high sensitivity to CO at temperatures lower than 300 degrees C, at which insignificant sensitivity to methane is observed. This makes the sensor selective to CO in presence of methane.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA