Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
J Fungi (Basel) ; 10(7)2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39057392

RESUMEN

Aspergillus terreus has attracted interest due to its application in industrial biotechnology, particularly for the production of itaconic acid and bioactive secondary metabolites. As related species also seem to possess a prosperous secondary metabolism, they are of high interest for genome mining and exploitation. Here, we present draft genome sequences for six species from Aspergillus section Terrei and one species from Aspergillus section Nidulantes. Whole-genome phylogeny confirmed that section Terrei is monophyletic. Genome analyses identified between 70 and 108 key secondary metabolism genes in each of the genomes of section Terrei, the highest rate found in the genus Aspergillus so far. The respective enzymes fall into 167 distinct families with most of them corresponding to potentially unique compounds or compound families. Moreover, 53% of the families were only found in a single species, which supports the suitability of species from section Terrei for further genome mining. Intriguingly, this analysis, combined with heterologous gene expression and metabolite identification, suggested that species from section Terrei use a strategy for UV protection different to other species from the genus Aspergillus. Section Terrei contains a complete plant polysaccharide degrading potential and an even higher cellulolytic potential than other Aspergilli, possibly facilitating additional applications for these species in biotechnology.

2.
Metab Eng ; 83: 75-85, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38428729

RESUMEN

The success of forward metabolic engineering depends on a thorough understanding of the behaviour of a heterologous metabolic pathway within its host. We have recently described CRI-SPA, a high-throughput gene editing method enabling the delivery of a metabolic pathway to all strains of the Saccharomyces cerevisiae knock-out library. CRI-SPA systematically quantifies the effect of each modified gene present in the library on product synthesis, providing a complete map of host:pathway interactions. In its first version, CRI-SPA relied on the colour of the product betaxanthins to quantify strains synthesis ability. However, only a few compounds produce a visible or fluorescent phenotype limiting the scope of our approach. Here, we adapt CRI-SPA to onboard a biosensor reporting the interactions between host genes and the synthesis of the colourless product cis-cis-muconic acid (CCM). We phenotype >9,000 genotypes, including both gene knock-out and overexpression, by quantifying the fluorescence of yeast colonies growing in high-density agar arrays. We identify novel metabolic targets belonging to a broad range of cellular functions and confirm their positive impact on CCM biosynthesis. In particular, our data suggests a new interplay between CCM biosynthesis and cytosolic redox through their common interaction with the oxidative pentose phosphate pathway. Our genome-wide exploration of host:pathway interaction opens novel strategies for improved production of CCM in yeast cell factories.


Asunto(s)
Saccharomyces cerevisiae , Ácido Sórbico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ácido Sórbico/análogos & derivados , Ácido Sórbico/metabolismo , Ingeniería Metabólica , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Nucleic Acids Res ; 51(17): e91, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37572348

RESUMEN

Biological functions are orchestrated by intricate networks of interacting genetic elements. Predicting the interaction landscape remains a challenge for systems biology and new research tools allowing simple and rapid mapping of sequence to function are desirable. Here, we describe CRI-SPA, a method allowing the transfer of chromosomal genetic features from a CRI-SPA Donor strain to arrayed strains in large libraries of Saccharomyces cerevisiae. CRI-SPA is based on mating, CRISPR-Cas9-induced gene conversion, and Selective Ploidy Ablation. CRI-SPA can be massively parallelized with automation and can be executed within a week. We demonstrate the power of CRI-SPA by transferring four genes that enable betaxanthin production into each strain of the yeast knockout collection (≈4800 strains). Using this setup, we show that CRI-SPA is highly efficient and reproducible, and even allows marker-free transfer of genetic features. Moreover, we validate a set of CRI-SPA hits by showing that their phenotypes correlate strongly with the phenotypes of the corresponding mutant strains recreated by reverse genetic engineering. Hence, our results provide a genome-wide overview of the genetic requirements for betaxanthin production. We envision that the simplicity, speed, and reliability offered by CRI-SPA will make it a versatile tool to forward systems-level understanding of biological processes.


Asunto(s)
Edición Génica , Saccharomyces cerevisiae , Betaxantinas , Edición Génica/métodos , Reproducibilidad de los Resultados , Saccharomyces cerevisiae/genética
4.
Sci Rep ; 13(1): 194, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36604572

RESUMEN

Aspergillus terreus is well-known for lovastatin and itaconic acid production with biomedical and commercial importance. The mechanisms of metabolite formation have been extensively studied to improve their yield through genetic engineering. However, the combined repertoire of carbohydrate-active enzymes (CAZymes), cytochrome P450s (CYP) enzymes, and secondary metabolites (SMs) in the different A. terreus strains has not been well studied yet, especially with respect to the presence of biosynthetic gene clusters (BGCs). Here we present a 30 Mb whole genome sequence of A. terreus ATCC 20541 in which we predicted 10,410 protein-coding genes. We compared the CAZymes, CYPs enzyme, and SMs across eleven A. terreus strains, and the results indicate that all strains have rich pectin degradation enzyme and CYP52 families. The lovastatin BGC of lovI was linked with lovF in A. terreus ATCC 20541, and the phenomenon was not found in the other strains. A. terreus ATCC 20541 lacked a non-ribosomal peptide synthetase (AnaPS) participating in acetylaszonalenin production, which was a conserved protein in the ten other strains. Our results present a comprehensive analysis of CAZymes, CYPs enzyme, and SM diversities in A. terreus strains and will facilitate further research in the function of BGCs associated with valuable SMs.


Asunto(s)
Aspergillus , Lovastatina , Humanos , Aspergillus/genética , Aspergillus/metabolismo , Lovastatina/farmacología , Lovastatina/química
5.
Synth Biol (Oxf) ; 7(1): ysac031, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36582448

RESUMEN

CRISPR-Cas9 technology has been utilized in different organisms for targeted mutagenesis, offering a fast, precise and cheap approach to speed up molecular breeding and study of gene function. Until now, many researchers have established the demonstration of applying the CRISPR/Cas9 system to various fungal model species. However, there are very few guidelines available for CRISPR/Cas9 genome editing in Aspergillus terreus. In this study, we present CRISPR/Cas9 genome editing in A. terreus. To optimize the guide ribonucleic acid (gRNA) expression, we constructed a modified single-guide ribonucleic acid (sgRNA)/Cas9 expression plasmid. By co-transforming an sgRNA/Cas9 expression plasmid along with maker-free donor deoxyribonucleic acid (DNA), we precisely disrupted the lovB and lovR genes, respectively, and created targeted gene insertion (lovF gene) and iterative gene editing in A. terreus (lovF and lovR genes). Furthermore, co-delivering two sgRNA/Cas9 expression plasmids resulted in precise gene deletion (with donor DNA) in the ku70 and pyrG genes, respectively, and efficient removal of the DNA between the two gRNA targeting sites (no donor DNA) in the pyrG gene. Our results showed that the CRISPR/Cas9 system is a powerful tool for precise genome editing in A. terreus, and our approach provides a great potential for manipulating targeted genes and contributions to gene functional study of A. terreus.

6.
Appl Environ Microbiol ; 88(22): e0097822, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36326240

RESUMEN

Intake of brassicaceous vegetables such as cabbage is associated with numerous health benefits. The major defense compounds in the Brassicales order are the amino acid-derived glucosinolates that have been associated with the health-promoting effects. This has primed a desire to build glucosinolate-producing microbial cell factories as a stable and reliable source. Here, we established-for the first time-production of the phenylalanine-derived benzylglucosinolate (BGLS) in Saccharomyces cerevisiae using two different engineering strategies: stable genome integration versus plasmid-based introduction of the biosynthetic genes. Although the plasmid-engineered strain showed a tendency to generate higher expression level of each gene (except CYP83B1) in the biosynthetic pathway, the genome-engineered strain produced 8.4-fold higher BGLS yield compared to the plasmid-engineered strain. Additionally, we optimized the genome-engineered strain by overexpressing the entry point genes CYP79A2 and CYP83B1, resulting in a 2-fold increase in BGLS production but also a 4.8-fold increase in the level of the last intermediate desulfo-benzylglucosinolate (dsBGLS). We applied several approaches to alleviate the metabolic bottleneck in the step where dsBGLS is converted to BGLS by sulfotransferase, SOT16 dependent on 3'-phosphoadenosine-5'-phosphosulfate (PAPS). BGLS production increased 1.7-fold by overexpressing SOT16 and 1.7-fold by introducing APS kinase, APK1, from Arabidopsis thaliana involved in the PAPS regeneration cycle. Modulating the endogenous sulfur assimilatory pathway through overexpression of MET3 and MET14 resulted in 2.4-fold to 12.81 µmol/L (=5.2 mg/L) for BGLS production. IMPORTANCE Intake of brassicaceous vegetables such as cabbage is associated with numerous health benefits. The major defense compounds in the Brassicales order are the amino acid-derived glucosinolates that have been associated with the health-promoting effects. This has primed a desire to build glucosinolate-producing microbial cell factories as a stable and reliable source. In this study, we engineered for the first time the production of phenylalanine-derived benzylglucosinolate in Saccharomyces cerevisiae with two engineering strategies: stable genome integration versus plasmid-based introduction of the biosynthetic genes. Although the plasmid-engineered strain generally showed higher expression level of each gene (except CYP83B1) in the biosynthetic pathway, the genome-engineered strain produced higher production level of benzylglucosinolate. Based on the genome-engineered strain, the benzylglucosinolate level was improved by optimization. Our study compared different approaches to engineer a multigene pathway for production of the plant natural product benzylglucosinolate. This may provide potential application in industrial biotechnology.


Asunto(s)
Arabidopsis , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Glucosinolatos/metabolismo , Arabidopsis/genética , Plásmidos/genética , Fenilalanina/metabolismo , Aminoácidos/metabolismo
7.
ACS Synth Biol ; 11(10): 3251-3263, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36126183

RESUMEN

Efficient homologous recombination in baker's yeast allows accurate fusion of DNA fragments via short identical sequence tags in vivo. Eliminating the need for an Escherichia coli cloning step speeds up genetic engineering of this yeast and sets the stage for large high-throughput projects depending on DNA construction. With the aim of developing similar tools for filamentous fungi, we first set out to determine the genetic- and sequence-length requirements needed for efficient fusion reactions, and demonstrated that in nonhomologous end-joining deficient strains of Aspergillus nidulans, efficient fusions can be achieved by 25 bp sequence overlaps. Based on these results, we developed a novel fungal in vivo DNA assembly toolbox for simple and flexible genetic engineering of filamentous fungi. Specifically, we have used this method for construction of AMA1-based vectors, complex gene-targeting substrates for gene deletion and gene insertion, and for marker-free CRISPR based gene editing. All reactions were done via single-step transformations involving fusions of up to six different DNA fragments. Moreover, we show that it can be applied in four different species of Aspergilli. We therefore envision that in vivo DNA assembly can be advantageously used for many more purposes and will develop into a popular tool for fungal genetic engineering.


Asunto(s)
Aspergillus nidulans , Edición Génica , Edición Génica/métodos , Marcación de Gen/métodos , Ingeniería Genética/métodos , Aspergillus nidulans/genética , ADN de Hongos/genética
8.
Org Lett ; 24(3): 804-808, 2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-35045257

RESUMEN

A chemical investigation of the filamentous fungus Aspergillus californicus led to the isolation of a polyketide-nonribosomal peptide hybrid, calipyridone A (1). A putative biosynthetic gene cluster cpd for production of 1 was next identified by genome mining. The role of the cpd cluster in the production of 1 was confirmed by multiple gene deletion experiments in the host strain as well as by heterologous expression of the hybrid gene cpdA inAspergillus oryzae. Moreover, chemical analyses of the mutant strains allowed the biosynthesis of 1 to be elucidated. The results indicate that the generation of the 2-pyridone moiety of 1 via nucleophilic attack of the iminol nitrogen to the carbonyl carbon is different from the biosynthesis of other fungal 2-pyridone products through P450-catalyzed tetramic acid ring expansions. In addition, two biogenetic intermediates, calipyridones B and C, showed modest inhibition effects on the plaque-forming ability of SARS-CoV-2.


Asunto(s)
Aspergillus/metabolismo , Piridonas/metabolismo , Aspergillus oryzae/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Eliminación de Gen , Humanos , Familia de Multigenes/genética , Policétidos/metabolismo , Policétidos/farmacología , Piridonas/farmacología , Pirrolidinonas/metabolismo , Pirrolidinonas/farmacología , SARS-CoV-2/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
9.
J Fungi (Basel) ; 9(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36675838

RESUMEN

The introduction of CRISPR technologies has revolutionized strain engineering in filamentous fungi. However, its use in commercial applications has been hampered by concerns over intellectual property (IP) ownership, and there is a need for implementing Cas nucleases that are not limited by complex IP constraints. One promising candidate in this context is the Mad7 enzyme, and we here present a versatile Mad7-CRISPR vector-set that can be efficiently used for the genetic engineering of four different Aspergillus species: Aspergillus nidulans, A. niger, A. oryzae and A. campestris, the latter being a species that has never previously been genetically engineered. We successfully used Mad7 to introduce unspecific as well as specific template-directed mutations including gene disruptions, gene insertions and gene deletions. Moreover, we demonstrate that both single-stranded oligonucleotides and PCR fragments equipped with short and long targeting sequences can be used for efficient marker-free gene editing. Importantly, our CRISPR/Mad7 system was functional in both non-homologous end-joining (NHEJ) proficient and deficient strains. Therefore, the newly implemented CRISPR/Mad7 was efficient to promote gene deletions and integrations using different types of DNA repair in four different Aspergillus species, resulting in the expansion of CRISPR toolboxes in fungal cell factories.

10.
Synth Biol (Oxf) ; 6(1): ysab031, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34746438

RESUMEN

Halophilic and osmotolerant yeast Debaryomyces hansenii has a high potential for cell factory applications due to its resistance to harsh environmental factors and compatibility with a wide substrate range. However, currently available genetic techniques do not allow the full potential of D. hansenii as a cell factory to be harnessed. Moreover, most of the currently available tools rely on the use of auxotrophic markers that are not suitable in wild-type prototrophic strains. In addition, the preferred non-homologous end-joining (NHEJ) DNA damage repair mechanism poses further challenges when precise gene targeting is required. In this study, we present a novel plasmid-based CRISPRCUG/Cas9 method for easy and efficient gene editing of the prototrophic strains of D. hansenii. Our toolset design is based on a dominant marker and facilitates quick assembly of the vectors expressing Cas9 and single or multiple single-guide RNAs (sgRNAs) that provide the possibility for multiplex gene engineering even in prototrophic strains. Moreover, we have constructed NHEJ-deficient D. hansenii that enable our CRISPRCUG/Cas9 tools to support the highly efficient introduction of point mutations and single/double gene deletions. Importantly, we also demonstrate that 90-nt single-stranded DNA oligonucleotides are sufficient for direct repair of DNA breaks induced by sgRNA-Cas9, resulting in precise edits reaching 100% efficiencies. In conclusion, tools developed in this study will greatly advance basic and applied research in D. hansenii. In addition, we envision that our tools can be rapidly adapted for gene editing of other non-conventional yeast species including the ones belonging to the CUG clade.

11.
Metab Eng ; 67: 153-163, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34174425

RESUMEN

Filamentous fungi secrete protein with a very high efficiency, and this potential can be exploited advantageously to produce therapeutic proteins at low costs. A significant barrier to this goal is posed by the fact that fungal N-glycosylation varies substantially from that of humans. Inappropriate N-glycosylation of therapeutics results in reduced product quality, including poor efficacy, decreased serum half-life, and undesirable immune reactions. One solution to this problem is to reprogram the glycosylation pathway of filamentous fungi to decorate proteins with glycans that match, or can be remodeled into, those that are accepted by humans. In yeast, deletion of ALG3 leads to the accumulation of Man5GlcNAc2 glycan structures that can act as a precursor for remodeling. However, in Aspergilli, deletion of the ALG3 homolog algC leads to an N-glycan pool where the majority of the structures contain more hexose residues than the Man3-5GlcNAc2 species that can serve as substrates for humanized glycan structures. Hence, additional strain optimization is required. In this report, we have used gene deletions in combination with enzymatic and chemical glycan treatments to investigate N-glycosylation in the model fungus Aspergillus nidulans. In vitro analyses showed that only some of the N-glycan structures produced by a mutant A. nidulans strain, which is devoid of any of the known ER mannose transferases, can be trimmed into desirable Man3GlcNAc2 glycan structures, as substantial amounts of glycan structures appear to be capped by glucose residues. In agreement with this view, deletion of the ALG6 homolog algF, which encodes the putative α-1,3- glucosyltransferase that adds the first glucose residue to the growing ER glycan structure, dramatically reduces the amounts of Hex6-7HexNAc2 structures. Similarly, these structures are also sensitive to overexpression of the genes encoding the heterodimeric α-glucosidase II complex. Without the glucose caps, a new set of large N-glycan structures was formed. Formation of this set is mostly, perhaps entirely, due to mannosylation, as overexpression of the gene encoding mannosidase activity led to their elimination. Based on our new insights into the N-glycan processing in A. nidulans, an A. nidulans mutant strain was constructed in which more than 70% of the glycoforms appear to be Man3-5GlcNAc2 species, which may serve as precursors for further engineering in order to create more complex human-like N-glycan structures.


Asunto(s)
Aspergillus nidulans , Glicosilación , Polisacáridos , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Glucosiltransferasas , Humanos , Manosiltransferasas/metabolismo , Proteínas de la Membrana , Microorganismos Modificados Genéticamente , Polisacáridos/genética
12.
Appl Microbiol Biotechnol ; 105(12): 5113-5121, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34106309

RESUMEN

In recent years, there has been an increasing demand for the replacement of synthetic food colorants with naturally derived alternatives. Filamentous fungi are prolific producers of secondary metabolites including polyketide-derived pigments, many of which have not been fully characterized yet. During our ongoing investigations of black aspergilli, we noticed that Aspergillus homomorphus turned yellow when cultivated on malt extract agar plates. Chemical discovery guided by UV and MS led to the isolation of two novel yellow natural products, and their structures were elucidated as aromatic α-pyrones homopyrones A (1) and B (2) by HRMS and NMR. Combined investigations including retro-biosynthesis, genome mining, and gene deletions successfully linked both compounds to their related biosynthetic gene clusters. This demonstrated that homopyrones are biosynthesized by using cinnamoyl-CoA as the starter unit, followed by extension with three malonyl-CoA units, and lactonization to give the core hybrid backbone structure. The polyketide synthase AhpA includes a C-methylation domain, which however seems to be promiscuous since only 2 is C-methylated. Altogether, the homopyrones represent a rare case of hybrid phenylpropanoid- and polyketide-derived natural products in filamentous fungi. KEY POINTS: • Homopyrones represent a rare type of fungal polyketides synthesized from cinnamic-CoA. • CRISPR/Cas9 technology has been firstly applied in Aspergillus homomorphus.


Asunto(s)
Policétidos , Aspergillus , Hongos , Sintasas Poliquetidas
13.
ACS Synth Biol ; 10(3): 579-588, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33651591

RESUMEN

Recent sequencing of numerous fungal species revealed large repertoires of putative biotechnologically relevant genes and secondary metabolite gene clusters. However, often the commercial potential of these species is impeded by difficulties to predict host physiological and metabolic compatibility with a given product, and lack of adequate genetic tools. Consequently, most heterologous production is performed in standard hosts where genetic tools and experience are in place. However, these species may not be suitable for all products. To increase chances of successful heterologous production, we have created a flexible platform, DIVERSIFY, for multispecies heterologous gene expression. This reduces the workload to construction of a single gene expression cassette, used to transform all DIVERSIFY strains in order to identify the optimal cell factory host. As proof of principle of the DIVERSIFY concept, we present the first version of our platform, DIVERSIFY 1.0, which we have successfully used for the production of three proteins and a metabolite in four different Aspergilli species, and for the identification of the best producer for each of the products. Moreover, we show that DIVERSIFY 1.0 is compatible with marker-free gene targeting induced by the CRISPR nucleases Cas9 and MAD7.


Asunto(s)
Hongos/metabolismo , Edición Génica/métodos , Aspergillus/genética , Aspergillus/metabolismo , Sistemas CRISPR-Cas/genética , Celulosa 1,4-beta-Celobiosidasa/genética , Celulosa 1,4-beta-Celobiosidasa/metabolismo , Hongos/genética , Glucuronidasa/genética , Glucuronidasa/metabolismo , ARN Guía de Kinetoplastida/metabolismo , Salicilatos/metabolismo
14.
Methods Mol Biol ; 2153: 239-252, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32840784

RESUMEN

Precise control of the gene copy number in the model yeast Saccharomyces cerevisiae may facilitate elucidation of enzyme functions or, in cell factory design, can be used to optimize production of proteins and metabolites. Currently, available methods can provide high gene-expression levels but fail to achieve accurate gene dosage. Moreover, strains generated using these methods often suffer from genetic instability resulting in loss of gene copies during prolonged cultivation. Here we present a method, CASCADE, which enables construction of strains with defined gene copy number. With our present system, gene(s) of interest can be amplified up to nine copies, but the upper copy limit of the system can be expanded. Importantly, the resulting strains can be stably propagated in selection-free media.


Asunto(s)
Roturas del ADN de Doble Cadena , Amplificación de Genes , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Dosificación de Gen , Regulación Fúngica de la Expresión Génica , Ingeniería Metabólica , Técnicas Microbiológicas , Saccharomyces cerevisiae/metabolismo
15.
Artículo en Inglés | MEDLINE | ID: mdl-32280481

RESUMEN

Fungi have the ability to transform organic materials into a rich and diverse set of useful products and provide distinct opportunities for tackling the urgent challenges before all humans. Fungal biotechnology can advance the transition from our petroleum-based economy into a bio-based circular economy and has the ability to sustainably produce resilient sources of food, feed, chemicals, fuels, textiles, and materials for construction, automotive and transportation industries, for furniture and beyond. Fungal biotechnology offers solutions for securing, stabilizing and enhancing the food supply for a growing human population, while simultaneously lowering greenhouse gas emissions. Fungal biotechnology has, thus, the potential to make a significant contribution to climate change mitigation and meeting the United Nation's sustainable development goals through the rational improvement of new and established fungal cell factories. The White Paper presented here is the result of the 2nd Think Tank meeting held by the EUROFUNG consortium in Berlin in October 2019. This paper highlights discussions on current opportunities and research challenges in fungal biotechnology and aims to inform scientists, educators, the general public, industrial stakeholders and policymakers about the current fungal biotech revolution.

16.
Fungal Genet Biol ; 139: 103378, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32234543

RESUMEN

This work presents the identification and proposed biosynthetic pathway for a compound of mixed polyketide-nonribosomal peptide origin that we named acurin A. The compound was isolated from an extract of the filamentous fungus Aspergillus aculeatus, and its core structure resemble that of the mycotoxin fusarin C produced by several Fusarium species. Based on bioinformatics in combination with RT-qPCR experiments and gene-deletion analysis, we identified a biosynthetic gene cluster (BGC) in A. aculeatus responsible for the biosynthesis of acurin A. Moreover, we were able to show that a polyketide synthase (PKS) and a nonribosomal peptide synthetase (NRPS) enzyme separately encoded by this BGC are responsible for the synthesis of the PK-NRP compound, acurin A, core structure. In comparison, the production of fusarin C is reported to be facilitated by a linked PKS-NRPS hybrid enzyme. Phylogenetic analyses suggest the PKS and NRPS in A. aculeatus resulted from a recent fission of an ancestral hybrid enzyme followed by gene duplication. In addition to the PKS- and NRPS-encoding genes of acurin A, we show that six other genes are influencing the biosynthesis including a regulatory transcription factor. Altogether, we have demonstrated the involvement of eight genes in the biosynthesis of acurin A, including an in-cluster transcription factor. This study highlights the biosynthetic capacity of A. aculeatus and serves as an example of how the CRISPR/Cas9 system can be exploited for the construction of fungal strains that can be readily engineered.


Asunto(s)
Aspergillus/genética , Vías Biosintéticas/genética , Péptido Sintasas/genética , Sintasas Poliquetidas/genética , Aspergillus/crecimiento & desarrollo , Policétidos/química , Policétidos/metabolismo
17.
Nat Commun ; 11(1): 1106, 2020 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-32107379

RESUMEN

Section Flavi encompasses both harmful and beneficial Aspergillus species, such as Aspergillus oryzae, used in food fermentation and enzyme production, and Aspergillus flavus, food spoiler and mycotoxin producer. Here, we sequence 19 genomes spanning section Flavi and compare 31 fungal genomes including 23 Flavi species. We reassess their phylogenetic relationships and show that the closest relative of A. oryzae is not A. flavus, but A. minisclerotigenes or A. aflatoxiformans and identify high genome diversity, especially in sub-telomeric regions. We predict abundant CAZymes (598 per species) and prolific secondary metabolite gene clusters (73 per species) in section Flavi. However, the observed phenotypes (growth characteristics, polysaccharide degradation) do not necessarily correlate with inferences made from the predicted CAZyme content. Our work, including genomic analyses, phenotypic assays, and identification of secondary metabolites, highlights the genetic and metabolic diversity within section Flavi.


Asunto(s)
Aspergillus flavus/genética , Aspergillus oryzae/genética , Genoma Fúngico/genética , Genómica , Aspergillus flavus/clasificación , Aspergillus flavus/enzimología , Aspergillus oryzae/clasificación , Aspergillus oryzae/enzimología , Reactores Biológicos , Metabolismo de los Hidratos de Carbono/genética , Productos Agrícolas/microbiología , ADN de Hongos/genética , Fermentación , Alimentos Fermentados , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Redes y Vías Metabólicas/genética , Familia de Multigenes , Fenotipo , Filogenia , Enfermedades de las Plantas/prevención & control , Metabolismo Secundario/genética
18.
mBio ; 11(1)2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-32019798

RESUMEN

The filamentous fungus Aspergillus fumigatus can cause a distinct set of clinical disorders in humans. Invasive aspergillosis (IA) is the most common life-threatening fungal disease of immunocompromised humans. The mitogen-activated protein kinase (MAPK) signaling pathways are essential to the adaptation to the human host. Fungal cell survival is highly dependent on the organization, composition, and function of the cell wall. Here, an evaluation of the global A. fumigatus phosphoproteome under cell wall stress caused by the cell wall-damaging agent Congo red (CR) revealed 485 proteins potentially involved in the cell wall damage response. Comparative phosphoproteome analyses with the ΔsakA, ΔmpkC, and ΔsakA ΔmpkC mutant strains from the osmotic stress MAPK cascades identify their additional roles during the cell wall stress response. Our phosphoproteomics allowed the identification of novel kinases and transcription factors (TFs) involved in osmotic stress and in the cell wall integrity (CWI) pathway. Our global phosphoproteome network analysis showed an enrichment for protein kinases, RNA recognition motif domains, and the MAPK signaling pathway. In contrast to the wild-type strain, there is an overall decrease of differentially phosphorylated kinases and phosphatases in ΔsakA, ΔmpkC, and ΔsakA ΔmpkC mutants. We constructed phosphomutants for the phosphorylation sites of several proteins differentially phosphorylated in the wild-type and mutant strains. For all the phosphomutants, there is an increase in the sensitivity to cell wall-damaging agents and a reduction in the MpkA phosphorylation upon CR stress, suggesting these phosphosites could be important for the MpkA modulation and CWI pathway regulation.IMPORTANCEAspergillus fumigatus is an opportunistic human pathogen causing allergic reactions or systemic infections, such as invasive pulmonary aspergillosis in immunocompromised patients. The mitogen-activated protein kinase (MAPK) signaling pathways are essential for fungal adaptation to the human host. Fungal cell survival, fungicide tolerance, and virulence are highly dependent on the organization, composition, and function of the cell wall. Upon cell wall stress, MAPKs phosphorylate multiple target proteins involved in the remodeling of the cell wall. Here, we investigate the global phosphoproteome of the ΔsakA and ΔmpkCA. fumigatus and high-osmolarity glycerol (HOG) pathway MAPK mutants upon cell wall damage. This showed the involvement of the HOG pathway and identified novel protein kinases and transcription factors, which were confirmed by fungal genetics to be involved in promoting tolerance of cell wall damage. Our results provide understanding of how fungal signal transduction networks modulate the cell wall. This may also lead to the discovery of new fungicide drug targets to impact fungal cell wall function, fungicide tolerance, and virulence.


Asunto(s)
Antifúngicos/farmacología , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/enzimología , Caspofungina/farmacología , Pared Celular/patología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Aspergillus fumigatus/genética , Pared Celular/efectos de los fármacos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Glicerol/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Concentración Osmolar , Presión Osmótica , Fosforilación , Proteoma , Transducción de Señal
19.
Fungal Genet Biol ; 130: 107-121, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31195124

RESUMEN

Filamentous fungi produce a vast number of bioactive secondary metabolites (SMs), some of which have found applications in the pharmaceutical industry including as antibiotics and immunosuppressants. As more and more species are whole genome sequenced the number of predicted clusters of genes for SM biosynthesis is ever increasing - holding a promise of novel useful bioactive SMs. To be able to fully utilize the potential of novel SMs, it is necessary to link the SM and the genes responsible for producing it. This can be challenging, but many strategies and tools have been developed for this purpose. Here we provide an overview of the methods used to establish the link between SM and biosynthetic gene cluster (BGC) and vice versa, along with the challenges and advantages of each of the methods. Part I of the review, associating BCG with SM, is divided into gene manipulations native strain and heterologous expression strategies, depending on the fungal species. Part II, associating SM with BGC, is divided into three main approaches: (1) homology search (2) retro-biosynthesis and (3) comparative genomics.


Asunto(s)
Hongos/genética , Hongos/metabolismo , Familia de Multigenes , Metabolismo Secundario/genética , Vías Biosintéticas/genética , Proteínas Fúngicas/genética , Hongos/enzimología , Regulación Fúngica de la Expresión Génica , Genoma Fúngico , Genómica , Péptido Sintasas/genética , Sintasas Poliquetidas/genética
20.
Artículo en Inglés | MEDLINE | ID: mdl-31061713

RESUMEN

BACKGROUND: CRISPR technology has revolutionized fungal genetic engineering by increasing the speed and complexity of the experiments that can be performed. Moreover, the efficiency of the system often allows genetic engineering to be introduced in non-model species. The efficiency of CRISPR gene editing is due to the formation of specific DNA double-strand breaks made by RNA guided nucleases. In filamentous fungi, only Cas9 has so far been used as the CRISPR nuclease. Since, gene editing with Cas9 is limited by its 5'-NGG-3' protospacer adjacent motif (PAM) sequence, it is important to introduce RNA guided nucleases that depend on other PAM sequences in order to be able to target a larger repertoire of genomic sites. Cpf1 from Lachnospiraceae bacterium employs a PAM sequence composed of 5'-TTTN-3' and therefore serves as an attractive option towards this goal. RESULTS: In this study we showed that Lb_cpf1 codon optimized for Aspergillus nidulans can be used for CRISPR based gene editing in filamentous fungi. We have developed a vector-based setup for Cpf1-mediated CRISPR experiments and showed that it works efficiently at different loci in A. nidulans and in A. niger. Specifically, we used our setup to demonstrate that Cpf1 is able to catalyze oligonucleotide-mediated genomic site-directed mutagenesis and marker-free gene targeting. CONCLUSIONS: In this paper we introduce Cpf1 as a new tool in the fungal CRISPR toolbox. Our experiments demonstrate that Cpf1 can be efficiently used in Aspergilli for gene editing thereby expanding the range of genomic DNA sequences that can be targeted by CRISPR technologies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA