Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Intern Med ; 296(1): 53-67, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38654517

RESUMEN

BACKGROUND: The Molecular International Prognostic Scoring System (IPSS-M) is the new gold standard for diagnostic outcome prediction in patients with myelodysplastic syndromes (MDS). This study was designed to assess the additive prognostic impact of dynamic transfusion parameters during early follow-up. METHODS: We retrieved complete transfusion data from 677 adult Swedish MDS patients included in the IPSS-M cohort. Time-dependent erythrocyte transfusion dependency (E-TD) was added to IPSS-M features and analyzed regarding overall survival and leukemic transformation (acute myeloid leukemia). A multistate Markov model was applied to assess the prognostic value of early changes in transfusion patterns. RESULTS: Specific clinical and genetic features were predicted for diagnostic and time-dependent transfusion patterns. Importantly, transfusion state both at diagnosis and within the first year strongly predicts outcomes in both lower (LR) and higher-risk (HR) MDSs. In multivariable analysis, 8-month landmark E-TD predicted shorter survival independently of IPSS-M (p < 0.001). A predictive model based on IPSS-M and 8-month landmark E-TD performed significantly better than a model including only IPSS-M. Similar trends were observed in an independent validation cohort (n = 218). Early transfusion patterns impacted both future transfusion requirements and outcomes in a multistate Markov model. CONCLUSION: The transfusion requirement is a robust and available clinical parameter incorporating the effects of first-line management. In MDS, it provides dynamic risk information independently of diagnostic IPSS-M and, in particular, clinical guidance to LR MDS patients eligible for potentially curative therapeutic intervention.


Asunto(s)
Síndromes Mielodisplásicos , Humanos , Síndromes Mielodisplásicos/terapia , Síndromes Mielodisplásicos/diagnóstico , Síndromes Mielodisplásicos/mortalidad , Femenino , Pronóstico , Masculino , Anciano , Persona de Mediana Edad , Suecia , Cadenas de Markov , Anciano de 80 o más Años , Transfusión de Eritrocitos , Transfusión Sanguínea , Adulto
2.
Blood ; 143(11): 953-966, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38096358

RESUMEN

ABSTRACT: Relapse after complete remission (CR) remains the main cause of mortality after allogeneic stem cell transplantation for hematological malignancies and, therefore, improved biomarkers for early prediction of relapse remains a critical goal toward development and assessment of preemptive relapse treatment. Because the significance of cancer stem cells as a source of relapses remains unclear, we investigated whether mutational screening for persistence of rare cancer stem cells would enhance measurable residual disease (MRD) and early relapse prediction after transplantation. In a retrospective study of patients who relapsed and patients who achieved continuous-CR with myelodysplastic syndromes and related myeloid malignancies, combined flow cytometric cell sorting and mutational screening for persistence of rare relapse-initiating stem cells was performed in the bone marrow at multiple CR time points after transplantation. In 25 CR samples from 15 patients that later relapsed, only 9 samples were MRD-positive in mononuclear cells (MNCs) whereas flowcytometric-sorted hematopoietic stem and progenitor cells (HSPCs) were MRD-positive in all samples, and always with a higher variant allele frequency than in MNCs (mean, 97-fold). MRD-positivity in HSPCs preceded MNCs in multiple sequential samples, in some cases preceding relapse by >2 years. In contrast, in 13 patients in long-term continuous-CR, HSPCs remained MRD-negative. Enhanced MRD sensitivity was also observed in total CD34+ cells, but HSPCs were always more clonally involved (mean, 8-fold). In conclusion, identification of relapse-initiating cancer stem cells and mutational MRD screening for their persistence consistently enhances MRD sensitivity and earlier prediction of relapse after allogeneic stem cell transplantation.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Leucemia Mieloide Aguda , Humanos , Trasplante Homólogo , Estudios Retrospectivos , Recurrencia Local de Neoplasia , Respuesta Patológica Completa , Enfermedad Crónica , Células Madre Neoplásicas/patología , Recurrencia , Neoplasia Residual/diagnóstico , Neoplasia Residual/patología , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/terapia
3.
Cancer Res ; 84(2): 211-225, 2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-37921711

RESUMEN

Myelodysplastic syndromes with ring sideroblasts (MDS-RS) commonly develop from hematopoietic stem cells (HSC) bearing mutations in the splicing factor SF3B1 (SF3B1mt). Direct studies into MDS-RS pathobiology have been limited by a lack of model systems that fully recapitulate erythroid biology and RS development and the inability to isolate viable human RS. Here, we combined successful direct RS isolation from patient samples, high-throughput multiomics analysis of cells encompassing the SF3B1mt stem-erythroid continuum, and functional assays to investigate the impact of SF3B1mt on erythropoiesis and RS accumulation. The isolated RS differentiated, egressed into the blood, escaped traditional nonsense-mediated decay (NMD) mechanisms, and leveraged stress-survival pathways that hinder wild-type hematopoiesis through pathogenic GDF15 overexpression. Importantly, RS constituted a contaminant of magnetically enriched CD34+ cells, skewing bulk transcriptomic data. Mis-splicing in SF3B1mt cells was intensified by erythroid differentiation through accelerated RNA splicing and decreased NMD activity, and SF3B1mt led to truncations in several MDS-implicated genes. Finally, RNA mis-splicing induced an uncoupling of RNA and protein expression, leading to critical abnormalities in proapoptotic p53 pathway genes. Overall, this characterization of erythropoiesis in SF3B1mt RS provides a resource for studying MDS-RS and uncovers insights into the unexpectedly active biology of the "dead-end" RS. SIGNIFICANCE: Ring sideroblast isolation combined with state-of-the-art multiomics identifies survival mechanisms underlying SF3B1-mutant erythropoiesis and establishes an active role for erythroid differentiation and ring sideroblasts themselves in SF3B1-mutant myelodysplastic syndrome pathogenesis.


Asunto(s)
Síndromes Mielodisplásicos , Fosfoproteínas , Humanos , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/patología , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Empalme del ARN/genética , Mutación , Factores de Transcripción/metabolismo , ARN/metabolismo
4.
Clin Cancer Res ; 29(20): 4256-4267, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37498312

RESUMEN

PURPOSE: Ring sideroblasts (RS) define the low-risk myelodysplastic neoplasm (MDS) subgroup with RS but may also reflect erythroid dysplasia in higher risk myeloid neoplasm. The benign behavior of MDS with RS (MDSRS+) is limited to SF3B1-mutated cases without additional high-risk genetic events, but one third of MDSRS+ carry no SF3B1 mutation, suggesting that different molecular mechanisms may underlie RS formation. We integrated genomic and transcriptomic analyses to evaluate whether transcriptome profiles may improve current risk stratification. EXPERIMENTAL DESIGN: We studied a prospective cohort of MDSRS+ patients irrespective of World Health Organization (WHO) class with regard to somatic mutations, copy-number alterations, and bone marrow CD34+ cell transcriptomes to assess whether transcriptome profiles add to prognostication and provide input on disease classification. RESULTS: SF3B1, SRSF2, or TP53 multihit mutations were found in 89% of MDSRS+ cases, and each mutation category was associated with distinct clinical outcome, gene expression, and alternative splicing profiles. Unsupervised clustering analysis identified three clusters with distinct hemopoietic stem and progenitor (HSPC) composition, which only partially overlapped with mutation groups. IPSS-M and the transcriptome-defined proportion of megakaryocyte/erythroid progenitors (MEP) independently predicted survival in multivariable analysis. CONCLUSIONS: These results provide essential input on the molecular basis of SF3B1-unmutated MDSRS+ and propose HSPC quantification as a prognostic marker in myeloid neoplasms with RS.


Asunto(s)
Genómica , Neoplasias , Humanos , Factores de Empalme de ARN/genética , Estudios Prospectivos , Medición de Riesgo , Perfilación de la Expresión Génica , Mutación , Fosfoproteínas/genética , Pronóstico
6.
Nat Cell Biol ; 24(3): 299-306, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35292784

RESUMEN

Transfer RNA-derived fragments (tRFs) are emerging small noncoding RNAs that, although commonly altered in cancer, have poorly defined roles in tumorigenesis1. Here we show that pseudouridylation (Ψ) of a stem cell-enriched tRF subtype2, mini tRFs containing a 5' terminal oligoguanine (mTOG), selectively inhibits aberrant protein synthesis programmes, thereby promoting engraftment and differentiation of haematopoietic stem and progenitor cells (HSPCs) in patients with myelodysplastic syndrome (MDS). Building on evidence that mTOG-Ψ targets polyadenylate-binding protein cytoplasmic 1 (PABPC1), we employed isotope exchange proteomics to reveal critical interactions between mTOG and functional RNA-recognition motif (RRM) domains of PABPC1. Mechanistically, this hinders the recruitment of translational co-activator PABPC1-interacting protein 1 (PAIP1)3 and strongly represses the translation of transcripts sharing pyrimidine-enriched sequences (PES) at the 5' untranslated region (UTR), including 5' terminal oligopyrimidine tracts (TOP) that encode protein machinery components and are frequently altered in cancer4. Significantly, mTOG dysregulation leads to aberrantly increased translation of 5' PES messenger RNA (mRNA) in malignant MDS-HSPCs and is clinically associated with leukaemic transformation and reduced patient survival. These findings define a critical role for tRFs and Ψ in difficult-to-treat subsets of MDS characterized by high risk of progression to acute myeloid leukaemia (AML).


Asunto(s)
Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Células Madre Hematopoyéticas/metabolismo , Humanos , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/patología , Factores de Iniciación de Péptidos/metabolismo , Seudouridina , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Proteínas de Unión al ARN/genética
7.
Blood Adv ; 6(10): 2992-3005, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35042235

RESUMEN

SF3B1K700E is the most frequent mutation in myelodysplastic syndrome (MDS), but the mechanisms by which it drives MDS pathogenesis remain unclear. We derived a panel of 18 genetically matched SF3B1K700E- and SF3B1WT-induced pluripotent stem cell (iPSC) lines from patients with MDS with ring sideroblasts (MDS-RS) harboring isolated SF3B1K700E mutations and performed RNA and ATAC sequencing in purified CD34+/CD45+ hematopoietic stem/progenitor cells (HSPCs) derived from them. We developed a novel computational framework integrating splicing with transcript usage and gene expression analyses and derived a SF3B1K700E splicing signature consisting of 59 splicing events linked to 34 genes, which associates with the SF3B1 mutational status of primary MDS patient cells. The chromatin landscape of SF3B1K700E HSPCs showed increased priming toward the megakaryocyte- erythroid lineage. Transcription factor motifs enriched in chromatin regions more accessible in SF3B1K700E cells included, unexpectedly, motifs of the TEA domain (TEAD) transcription factor family. TEAD expression and transcriptional activity were upregulated in SF3B1-mutant iPSC-HSPCs, in support of a Hippo pathway-independent role of TEAD as a potential novel transcriptional regulator of SF3B1K700E cells. This study provides a comprehensive characterization of the transcriptional and chromatin landscape of SF3B1K700E HSPCs and nominates novel mis-spliced genes and transcriptional programs with putative roles in MDS-RS disease biology.


Asunto(s)
Células Madre Pluripotentes Inducidas , Síndromes Mielodisplásicos , Cromatina/genética , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Mutación , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/patología , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Factores de Transcripción/metabolismo
8.
Leukemia ; 34(1): 271-282, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31375745

RESUMEN

Established cell culture systems have failed to accurately recapitulate key features of terminal erythroid maturation, hampering our ability to in vitro model and treat diseases with impaired erythropoiesis such as myelodysplastic syndromes with ring sideroblasts (MDS-RS). We developed an efficient and robust three-dimensional (3D) scaffold culture model supporting terminal erythroid differentiation from both mononuclear (MNC) or CD34+-enriched primary bone marrow cells from healthy donors and MDS-RS patients. While CD34+ cells did not proliferate beyond two weeks in 2D suspension cultures, the 3D scaffolds supported CD34+ and MNC erythroid proliferation over four weeks demonstrating the importance of the 3D environment. CD34+ cells cultured in 3D facilitated the highest expansion and maturation of erythroid cells, including generation of erythroblastic islands and enucleated erythrocytes, while MNCs supported multi-lineage hemopoietic differentiation and cytokine secretion relevant for MDS-RS. Importantly, MDS-RS 3D-cultures supported de novo generation of ring sideroblasts and maintenance of the mutated clone. The 3D cultures effectively model a clonal disease characterized by terminal erythroid failure and can be used to assess therapeutic compounds.


Asunto(s)
Técnicas de Cultivo de Célula , Eritropoyesis , Síndromes Mielodisplásicos , Antígenos CD34 , Diferenciación Celular/fisiología , Células Cultivadas , Células Precursoras Eritroides/citología , Humanos , Células Madre Mesenquimatosas/citología
9.
Blood ; 130(7): 881-890, 2017 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-28634182

RESUMEN

Mutations in the RNA splicing gene SF3B1 are found in >80% of patients with myelodysplastic syndrome with ring sideroblasts (MDS-RS). We investigated the origin of SF3B1 mutations within the bone marrow hematopoietic stem and progenitor cell compartments in patients with MDS-RS. Screening for recurrently mutated genes in the mononuclear cell fraction revealed mutations in SF3B1 in 39 of 40 cases (97.5%), combined with TET2 and DNMT3A in 11 (28%) and 6 (15%) patients, respectively. All recurrent mutations identified in mononuclear cells could be tracked back to the phenotypically defined hematopoietic stem cell (HSC) compartment in all investigated patients and were also present in downstream myeloid and erythroid progenitor cells. While in agreement with previous studies, little or no evidence for clonal (SF3B1 mutation) involvement could be found in mature B cells, consistent involvement at the pro-B-cell progenitor stage was established, providing definitive evidence for SF3B1 mutations targeting lymphomyeloid HSCs and compatible with mutated SF3B1 negatively affecting lymphoid development. Assessment of stem cell function in vitro as well as in vivo established that only HSCs and not investigated progenitor populations could propagate the SF3B1 mutated clone. Upon transplantation into immune-deficient mice, SF3B1 mutated MDS-RS HSCs differentiated into characteristic ring sideroblasts, the hallmark of MDS-RS. Our findings provide evidence of a multipotent lymphomyeloid HSC origin of SF3B1 mutations in MDS-RS patients and provide a novel in vivo platform for mechanistically and therapeutically exploring SF3B1 mutated MDS-RS.


Asunto(s)
Células Madre Hematopoyéticas/metabolismo , Linfocitos/metabolismo , Mutación/genética , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/patología , Células Mieloides/metabolismo , Fosfoproteínas/genética , Factores de Empalme de ARN/genética , Anciano , Anciano de 80 o más Años , Animales , Diferenciación Celular , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Empalmosomas/metabolismo
10.
Oncotarget ; 7(45): 72685-72698, 2016 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-27683035

RESUMEN

The stem and progenitor cell compartments in low- and intermediate-risk myelodysplastic syndromes (MDS) have recently been described, and shown to be highly conserved when compared to those in acute myeloid leukemia (AML). Much less is known about the characteristics of the hematopoietic hierarchy of subgroups of MDS with a high risk of transforming to AML. Immunophenotypic analysis of immature stem and progenitor cell compartments from patients with an isolated loss of the entire chromosome 7 (isolated -7), an independent high-risk genetic event in MDS, showed expansion and dominance of the malignant -7 clone in the granulocyte and macrophage progenitors (GMP), and other CD45RA+ progenitor compartments, and a significant reduction of the LIN-CD34+CD38low/-CD90+CD45RA- hematopoietic stem cell (HSC) compartment, highly reminiscent of what is typically seen in AML, and distinct from low-risk MDS. Established functional in vitro and in vivo stem cell assays showed a poor readout for -7 MDS patients irrespective of marrow blast counts. Moreover, while the -7 clone dominated at all stages of GM differentiation, the -7 clone had a competitive disadvantage in erythroid differentiation. In azacitidine-treated -7 MDS patients with a clinical response, the decreased clonal involvement in mononuclear bone marrow cells was not accompanied by a parallel reduced clonal involvement in the dominant CD45RA+ progenitor populations, suggesting a selective azacitidine-resistance of these distinct -7 progenitor compartments. Our data demonstrate, in a subgroup of high risk MDS with monosomy 7, that the perturbed stem and progenitor cell compartments resemble more that of AML than low-risk MDS.


Asunto(s)
Deleción Cromosómica , Células Madre Hematopoyéticas/metabolismo , Síndromes Mielodisplásicos/genética , Antígenos CD/metabolismo , Azacitidina/farmacología , Biomarcadores , Diferenciación Celular , Linaje de la Célula/genética , Cromosomas Humanos Par 7 , Femenino , Citometría de Flujo , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/patología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Inmunofenotipificación , Hibridación Fluorescente in Situ , Masculino , Mutación , Síndromes Mielodisplásicos/metabolismo
11.
Br J Haematol ; 171(4): 478-90, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26255870

RESUMEN

Refractory anaemia with ring sideroblasts (RARS) is distinguished by hyperplastic inefficient erythropoiesis, aberrant mitochondrial ferritin accumulation and anaemia. Heterozygous mutations in the spliceosome gene SF3B1 are found in a majority of RARS cases. To explore the link between SF3B1 mutations and anaemia, we studied mutated RARS CD34(+) marrow cells with regard to transcriptome sequencing, splice patterns and mutational allele burden during erythroid differentiation. Transcriptome profiling during early erythroid differentiation revealed a marked up-regulation of genes involved in haemoglobin synthesis and in the oxidative phosphorylation process, and down-regulation of mitochondrial ABC transporters compared to normal bone marrow. Moreover, mis-splicing of genes involved in transcription regulation, particularly haemoglobin synthesis, was confirmed, indicating a compromised haemoglobinization during RARS erythropoiesis. In order to define the phase during which erythroid maturation of SF3B1 mutated cells is most affected, we assessed allele burden during erythroid differentiation in vitro and in vivo and found that SF3B1 mutated erythroblasts showed stable expansion until late erythroblast stage but that terminal maturation to reticulocytes was significantly reduced. In conclusion, SF3B1 mutated RARS progenitors display impaired splicing with potential downstream consequences for genes of key importance for haemoglobin synthesis and terminal erythroid differentiation.


Asunto(s)
Anemia Refractaria/genética , Anemia Sideroblástica/genética , Eritropoyesis/genética , Hemoglobinas/biosíntesis , Fosfoproteínas/genética , Empalme del ARN/genética , Ribonucleoproteína Nuclear Pequeña U2/genética , Anciano , Anciano de 80 o más Años , Anemia Refractaria/sangre , Anemia Sideroblástica/sangre , Transporte Biológico/genética , Perfilación de la Expresión Génica , Genes Supresores de Tumor , Heterogeneidad Genética , Humanos , Hierro/metabolismo , Fosfoproteínas/fisiología , Isoformas de Proteínas/genética , Factores de Empalme de ARN , ARN Mensajero/genética , Ribonucleoproteína Nuclear Pequeña U2/fisiología , Análisis de Secuencia de ARN , Transducción de Señal/genética
12.
Cancer Cell ; 25(6): 794-808, 2014 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-24835589

RESUMEN

Evidence for distinct human cancer stem cells (CSCs) remains contentious and the degree to which different cancer cells contribute to propagating malignancies in patients remains unexplored. In low- to intermediate-risk myelodysplastic syndromes (MDS), we establish the existence of rare multipotent MDS stem cells (MDS-SCs), and their hierarchical relationship to lineage-restricted MDS progenitors. All identified somatically acquired genetic lesions were backtracked to distinct MDS-SCs, establishing their distinct MDS-propagating function in vivo. In isolated del(5q)-MDS, acquisition of del(5q) preceded diverse recurrent driver mutations. Sequential analysis in del(5q)-MDS revealed genetic evolution in MDS-SCs and MDS-progenitors prior to leukemic transformation. These findings provide definitive evidence for rare human MDS-SCs in vivo, with extensive implications for the targeting of the cells required and sufficient for MDS-propagation.


Asunto(s)
Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/patología , Células Madre Neoplásicas/fisiología , Animales , Antígenos CD/biosíntesis , Antígenos CD/inmunología , Deleción Cromosómica , Cromosomas Humanos Par 5 , Citometría de Flujo , Perfilación de la Expresión Génica , Predisposición Genética a la Enfermedad , Xenoinjertos , Humanos , Ratones , Ratones Endogámicos NOD , Mutación , Síndromes Mielodisplásicos/inmunología , Células Madre Neoplásicas/inmunología , Células Madre Neoplásicas/patología , Pronóstico
13.
Leukemia ; 27(4): 889-896, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23070040

RESUMEN

Refractory anemia with ring sideroblasts (RARS) is characterized by mitochondrial ferritin (FTMT) accumulation and markedly suppressed expression of the iron transporter ABCB7. To test the hypothesis that ABCB7 is a key mediator of ineffective erythropoiesis of RARS, we modulated its expression in hematopoietic cells. ABCB7 up and downregulation did not influence growth and survival of K562 cells. In normal bone marrow, ABCB7 downregulation reduced erythroid differentiation, growth and colony formation, and resulted in a gene expression pattern similar to that observed in intermediate RARS erythroblasts, and in the accumulation of FTMT. Importantly, forced ABCB7 expression restored erythroid colony growth and decreased FTMT expression level in RARS CD34+ marrow cells. Mutations in the SF3B1 gene, a core component of the RNA splicing machinery, were recently identified in a high proportion of patients with RARS and 11 of the 13 RARS patients in this study carried this mutation. Interestingly, ABCB7 exon usage differed between normal bone marrow and RARS, as well as within the RARS cohort. In addition, SF3B1 silencing resulted in downregulation of ABCB7 in K562 cells undergoing erythroid differentiation. Our findings support that ABCB7 is implicated in the phenotype of acquired RARS and suggest a relation between SF3B1 mutations and ABCB7 downregulation.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Anemia Refractaria/genética , Anemia Sideroblástica/genética , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Regulación hacia Abajo , Exones , Femenino , Citometría de Flujo , Silenciador del Gen , Humanos , Inmunohistoquímica , Células K562 , Masculino , Persona de Mediana Edad , Fenotipo , Empalme del ARN , Reacción en Cadena en Tiempo Real de la Polimerasa
14.
J Vis Exp ; (62)2012 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-22525832

RESUMEN

Hematopoietic stem cells require a unique microenvironment in order to sustain blood cell formation; the bone marrow (BM) is a complex three-dimensional (3D) tissue wherein hematopoiesis is regulated by spatially organized cellular microenvironments termed niches. The organization of the BM niches is critical for the function or dysfunction of normal or malignant BM(5). Therefore a better understanding of the in vivo microenvironment using an ex vivo mimicry would help us elucidate the molecular, cellular and microenvironmental determinants of leukemogenesis. Currently, hematopoietic cells are cultured in vitro in two-dimensional (2D) tissue culture flasks/well-plates requiring either co-culture with allogenic or xenogenic stromal cells or addition of exogenous cytokines. These conditions are artificial and differ from the in vivo microenvironment in that they lack the 3D cellular niches and expose the cells to abnormally high cytokine concentrations which can result in differentiation and loss of pluripotency. Herein, we present a novel 3D bone marrow culture system that simulates the in vivo 3D growth environment and supports multilineage hematopoiesis in the absence of exogenous growth factors. The highly porous scaffold used in this system made of polyurethane (PU), facilitates high-density cell growth across a higher specific surface area than the conventional monolayer culture in 2D. Our work has indicated that this model supported the growth of human cord blood (CB) mononuclear cells (MNC) and primary leukemic cells in the absence of exogenous cytokines. This novel 3D mimicry provides a viable platform for the development of a human experimental model to study hematopoiesis and to explore novel treatments for leukemia.


Asunto(s)
Biomimética/métodos , Células de la Médula Ósea/citología , Técnicas de Cultivo de Célula/métodos , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/citología , Humanos
15.
Biomaterials ; 32(35): 9263-70, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21908041

RESUMEN

Cord blood expansion ex vivo can be achieved in liquid suspension through the addition of cytokines at the expense of often undesirable cell differentiation. In order to derive a cytokine-free dynamic culture system, we hypothesised that a three-dimensional (3D) environment in the form of highly porous scaffolds made of poly (D,L-lactide-co-glycolide) (PLGA) or polyurethane (PU) for the biomimetic growth of cord blood mononuclear cells (CBMNCs), would facilitate expansion of hematopoietic cells without exogenous cytokines. Both scaffolds supported cellular expansion ex vivo. Cytokine-free, long-term culture was best in PU coated with collagen type I (54-fold expansion). In contrast, traditional 2D well-plate cultures collapsed within 4 days in the absence of cytokines. CBMNCs cultured in the scaffolds were visualised by scanning electron microscopy and immunophenotypic/immunostaining analysis and the studies validated the presence of a dynamic culture containing erythroid precursors (CD45(-)/CD71(+)/CD235a(+)), hematopoietic stem/progenitor cells (CD38(-)CD34(+), CD117(+)), maturing myeloid cells (CD38(+), MPO(+)), CD4(+) and CD8(+) T-lymphocytes and megakaryocytes (FVIII(+)). Colony forming unit (CFU) assays indicated that BFU-E and CFU-GM increased (p < 0.05) whereas CFU-GEMM were maintained at week 4. In conclusion, this 3D culture system is capable of long-term, cytokine-free expansion of CBMNCs, enabling the study of hematopoiesis and providing a potential platform for drug discovery and therapeutic applications ex vivo.


Asunto(s)
Citocinas/farmacología , Sangre Fetal/citología , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/efectos de los fármacos , Andamios del Tejido/química , Linaje de la Célula/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Células Clonales , Humanos , Inmunofenotipificación , Ácido Láctico/farmacología , Leucocitos Mononucleares/ultraestructura , Ácido Poliglicólico/farmacología , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Poliuretanos/farmacología , Factores de Tiempo
16.
J R Soc Interface ; 6(32): 209-32, 2009 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-19033137

RESUMEN

In recent years, the potential of stem cell research for tissue engineering-based therapies and regenerative medicine clinical applications has become well established. In 2006, Chung pioneered the first entire organ transplant using adult stem cells and a scaffold for clinical evaluation. With this a new milestone was achieved, with seven patients with myelomeningocele receiving stem cell-derived bladder transplants resulting in substantial improvements in their quality of life. While a bladder is a relatively simple organ, the breakthrough highlights the incredible benefits that can be gained from the cross-disciplinary nature of tissue engineering and regenerative medicine (TERM) that encompasses stem cell research and stem cell bioprocessing. Unquestionably, the development of bioprocess technologies for the transfer of the current laboratory-based practice of stem cell tissue culture to the clinic as therapeutics necessitates the application of engineering principles and practices to achieve control, reproducibility, automation, validation and safety of the process and the product. The successful translation will require contributions from fundamental research (from developmental biology to the 'omics' technologies and advances in immunology) and from existing industrial practice (biologics), especially on automation, quality assurance and regulation. The timely development, integration and execution of various components will be critical-failures of the past (such as in the commercialization of skin equivalents) on marketing, pricing, production and advertising should not be repeated. This review aims to address the principles required for successful stem cell bioprocessing so that they can be applied deftly to clinical applications.


Asunto(s)
Medicina Regenerativa/métodos , Células Madre/citología , Ingeniería de Tejidos/métodos , Animales , Humanos , Andamios del Tejido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...