Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 196: 494-501, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29324389

RESUMEN

New robust correlation models for ozonation, based on UVA254 and fluorescence surrogate parameters and developed considering kinetic information, have been applied at pilot-scale. This model framework is validated with the aim for operators to control the ozone dose for the removal of trace organic contaminants (TrOCs) in effluents from full-scale municipal wastewater treatment plants. The inflected correlation model between ΔTrOCs and the surrogates predicts the removal of TrOCs (based on statistical evidence) solely using the 2nd order reaction rate constant with ozone (kO3) and in a more adequate manner than similar single correlation models. This allows the use of this new model for current and future TrOCs under investigation which is highly interesting when imposed discharge limits might include more and other TrOCs in future. The use of UVA254 might be preferable at the current timing for online monitoring of TrOC abatement as the model showed a good predictive power (based on statistical evidence and visual confirmation). Reliable online sensors are more widespread (and commercially) available compared to fluorescence sensors which are still under development, with the exception of a few examples. Nevertheless, the data processing of the fluorescence signals, isolating the different intensities associated with moieties reacting similarly to ozone might even increase the predictive power, given the lower degree of interference (i.e. less scattering).


Asunto(s)
Ozono/química , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/métodos , Cinética , Proyectos Piloto , Aguas Residuales/análisis , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis
2.
Int J Pharm ; 529(1-2): 678-693, 2017 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-28720539

RESUMEN

Twin-screw wet granulation is gaining increasing interest within the pharmaceutical industry for the continuous manufacturing of solid oral dosage forms. However, limited prior fundamental physical understanding has been generated relating to the granule formation mechanisms and kinetics along the internal compartmental length of a twin-screw granulator barrel, and about how process settings, barrel screw configuration and formulation properties such as particle size, density and surface properties influence these mechanisms. One of the main reasons for this limited understanding is that experimental data is generally only collected at the exit of the twin-screw granulator barrel although the granule formation occurs spatially along the internal length of the barrel. The purpose of this study is to analyze the twin-screw wet granulation process using both hydrophilic and hydrophobic formulations, manufactured under different process settings such as liquid-to-solid ratio, mass throughput and screw speed, in such a way that the mechanisms occurring in the individual granulator barrel compartments (i.e., the wetting and different conveying and kneading compartments) and their impact upon granule formation are understood. To achieve this, a unique experimental setup was developed allowing granule characteristic data-collection such as size, shape, liquid and porosity distribution at the different compartments along the length of the granulator barrel. Moreover, granule characteristic information per granule size class was determined. The experimental results indicated that liquid-to-solid ratio is the most important factor dictating the formation of the granules and their corresponding properties, by regulating the degree of aggregation and breakage in the different compartments along the internal length of the twin-screw granulator barrel. Collecting appropriate and detailed experimental data about granule formation along the internal length of the granulator barrel is thus crucial for gaining fundamental physical understanding of the twin-screw wet granulation process.


Asunto(s)
Química Farmacéutica , Preparaciones Farmacéuticas , Tamaño de la Partícula , Tecnología Farmacéutica
3.
Water Sci Technol ; 75(3-4): 507-517, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28192345

RESUMEN

Aeration is an essential component of aerobic biological wastewater treatment and is the largest energy consumer at most water resource recovery facilities. Most modelling studies neglect the inherent complexity of the aeration systems used. Typically, the blowers, air piping, and diffusers are not modelled in detail, completely mixed reactors in a series are used to represent plug-flow reactors, and empirical correlations are used to describe the impact of operating conditions on bubble formation and transport, and oxygen transfer from the bubbles to the bulk liquid. However, the mechanisms involved are very complex in nature and require significant research efforts. This contribution highlights why and where there is a need for more detail in the different aspects of the aeration system and compiles recent efforts to develop physical models of the entire aeration system (blower, valves, air piping and diffusers), as well as adding rigour to the oxygen transfer efficiency modelling (impact of viscosity, bubble size distribution, shear and hydrodynamics). As a result of these model extensions, more realistic predictions of dissolved oxygen profiles and energy consumption have been achieved. Finally, the current needs for further model development are highlighted.


Asunto(s)
Modelos Teóricos , Oxígeno/análisis , Aguas Residuales , Purificación del Agua/instrumentación , Purificación del Agua/métodos , Difusión , Hidrodinámica , Viscosidad , Aguas Residuales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...