Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Toxicol Chem ; 42(6): 1266-1275, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36896658

RESUMEN

Effects of anthropogenic activities such as urbanization, population growth, and agriculture on water quality are major concerns particularly in low-income countries where water quality monitoring can be challenging. The purpose of the present study was to evaluate the cytogenotoxic potential of water from urban and rural Malagasy marshes, coupling a fish (Nile tilapia, Oreochromis niloticus) and a plant (Allium cepa) species as bioindicators. The fish and plants were exposed for 72 h to water sampled in the two locations investigated. Using the comet assay on fish erythrocytes, DNA strand breaks were assessed, while mitotic index and nucleolar alterations were estimated in cells of the plant root apex. Comet assays revealed significant DNA strand breaks to fish erythrocytes in both the marshes investigated while the mitotic index and nucleolar characteristics in the roots of A. cepa mainly highlighted potential cytotoxicity in the urban marsh. Our results demonstrate the advantages of coupling in vivo biological test systems to screen potential cytogenotoxicity of surface water in low-income countries where comprehensive data sets of aquatic contaminants are often lacking. Environ Toxicol Chem 2023;42:1266-1275. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Cíclidos , Humedales , Animales , Ensayo Cometa , Daño del ADN , Cebollas/genética , Raíces de Plantas , ADN/farmacología
2.
Sci Total Environ ; 825: 153942, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35189234

RESUMEN

The rivers of Guadeloupe and Martinique (French West Indies) show high levels of chlordecone (CLD) contamination. This persistent molecule has a dramatic impact on both aquatic ecosystems and human health. In these rivers, epilithic biofilms are the main endogenous primary producers and represent a central food source for fish and crustaceans. Recently, their viscoelastic properties have been shown to be effective in bio-assessing pollution in tropical environments. As these properties are closely related to the biochemical composition of the biofilms, biochemical (fatty acids, pigments, extracellular polymeric substances (EPS) monosaccharides) and molecular markers (T-RFLP fingerprints of bacteria, archaea and eukaryotes) were investigated. Strong links between CLD pollution and both biofilm biochemistry and microbial community composition were found. In particular, high levels of CLD were linked with modified exo-polysaccharides corresponding to carbohydrates with enhanced adsorption and adhesion properties. The observed change probably resulted from a preferential interaction between CLD and sugars and/or a differential microbial secretion of EPS in response to the pollutant. These changes were expected to impact viscoelastic properties of epilithic biofilms highlighting the effect of CLD pollution on biofilm EPS matrix. They also suggested that microorganisms implement a CLD scavenging strategy, providing new insights on the role of EPS in the adaptation of microorganisms to CLD-polluted environments.


Asunto(s)
Clordecona , Insecticidas , Adsorción , Animales , Biopelículas , Clordecona/análisis , Ecosistema , Insecticidas/análisis
3.
PLoS One ; 7(9): e46141, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23029412

RESUMEN

One of the greatest challenges in understanding the Amazon basin functioning is to ascertain the role played by floodplains in the organic matter (OM) cycle, crucial for a large spectrum of ecological mechanisms. Fatty acids (FAs) were combined with environmental descriptors and analyzed through multivariate and spatial tools (asymmetric eigenvector maps, AEM and principal coordinates of neighbor matrices, PCNM). This challenge allowed investigating the distribution of suspended particulate organic matter (SPOM), in order to trace its seasonal origin and quality, along a 800 km section of the Amazon river-floodplain system. Statistical analysis confirmed that large amounts of saturated FAs (15:0, 18:0, 24:0, 25:0 and 26:0), an indication of refractory OM, were concomitantly recorded with high pCO(2) in rivers, during the high water season (HW). Contrastingly, FAs marker which may be attributed in this ecosystem to aquatic plants (18:2ω6 and 18:3ω3) and cyanobacteria (16:1ω7), were correlated with higher O(2), chlorophyll a and pheopigments in floodplains, due to a high primary production during low waters (LW). Decreasing concentrations of unsaturated FAs, that characterize labile OM, were recorded during HW, from upstream to downstream. Furthermore, using PCNM and AEM spatial methods, FAs compositions of SPOM displayed an upstream-downstream gradient during HW, which was attributed to OM retention and the extent of flooded forest in floodplains. Discrimination of OM quality between the Amazon River and floodplains corroborate higher autotrophic production in the latter and transfer of OM to rivers at LW season. Together, these gradients demonstrate the validity of FAs as predictors of spatial and temporal changes in OM quality. These spatial and temporal trends are explained by 1) downstream change in landscape morphology as predicted by the River Continuum Concept; 2) enhanced primary production during LW when the water level decreased and its residence time increased as predicted by the Flood Pulse Concept.


Asunto(s)
Ácidos Grasos/análisis , Sustancias Húmicas/análisis , Ríos/química , Ecosistema , Hidrobiología , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...