Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Physiol ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38739546

RESUMEN

Rhamnogalacturonan II (RG-II) is a structurally complex and conserved domain of the pectin present in the primary cell walls of vascular plants. Borate crosslinking of RG-II is required for plants to grow and develop normally. Mutations that alter RG-II structure also affect crosslinking and are lethal or severely impair growth. Thus, few genes involved in RG-II synthesis have been identified. Here we developed a method to generate viable loss-of-function Arabidopsis (Arabidopsis thaliana) mutants in callus tissue via CRISPR/Cas9-mediated gene editing. We combined this with a candidate gene approach to characterize the male gametophyte defective 2 (MPG2) gene that encodes a putative family GT29 glycosyltransferase. Plants homozygous for this mutation do not survive. We showed that in the callus mutant cell walls, RG-II does not crosslink normally because it lacks 3-deoxy-D-manno-octulosonic acid (Kdo) and thus cannot form the α-L-Rhap-(1→5)-α-D-kdop-(1→ sidechain. We suggest that MGP2 encodes an inverting RG-II CMP-ß-Kdo transferase (RCKT1). Our discovery provides further insight into the role of sidechains in RG-II dimerization. Our method also provides a viable strategy for further identifying proteins involved in the biosynthesis of RG-II.

2.
Curr Opin Biotechnol ; 86: 103069, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38341984

RESUMEN

As humanity looks towards expanding activity from low Earth orbit to the Moon and beyond, resource use efficiency and self-sustainability will be critical to ensuring success in the long term. Furthermore, solutions developed for the stringent requirements of space will be equally valuable in meeting sustainability goals here on Earth. Advances in synthetic biology allow us to harness the complex metabolism of life to produce the materials we need in situ. Translating those lessons learned from microbial systems to more carbon-efficient photosynthetic organisms is an area of growing interest. Plants can be engineered to sustainably meet a range of needs, from fuels to materials and medicines.


Asunto(s)
Vuelo Espacial , Biología Sintética , Plantas/metabolismo , Fotosíntesis
3.
Nat Plants ; 9(11): 1890-1901, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37884654

RESUMEN

Plant survival depends on dynamic stress-response pathways in changing environments. To uncover pathway components, we screened an ethyl methanesulfonate-mutagenized transgenic line containing a stress-inducible luciferase construct and isolated a constitutive expression mutant. The mutant is the result of an amino acid substitution in the seventh subunit of the hetero-octameric conserved oligomeric Golgi (COG) complex of Arabidopsis thaliana. Complementation studies verified the Golgi localization of cog7, and stress tests established accelerated dark-induced carbon deprivation/senescence of the mutant compared with wild-type plants. Multiomics and biochemical analyses revealed accelerated induction of protein ubiquitination and autophagy, and a counterintuitive increased protein N-glycosylation in senescencing cog7 relative to wild-type. A revertant screen using the overexpressor (FOX)-hunting system established partial, but notable rescue of cog7 phenotypes by COG5 overexpression, and conversely premature senescence in reduced COG5 expressing lines. These findings identify COG-imposed Golgi functional integrity as a main player in ensuring cellular survival under energy-limiting conditions.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Glicosilación
4.
Nature ; 618(7967): 1017-1023, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37316672

RESUMEN

The discovery and application of genome editing introduced a new era of plant breeding by giving researchers efficient tools for the precise engineering of crop genomes1. Here we demonstrate the power of genome editing for engineering broad-spectrum disease resistance in rice (Oryza sativa). We first isolated a lesion mimic mutant (LMM) from a mutagenized rice population. We then demonstrated that a 29-base-pair deletion in a gene we named RESISTANCE TO BLAST1 (RBL1) caused broad-spectrum disease resistance and showed that this mutation caused an approximately 20-fold reduction in yield. RBL1 encodes a cytidine diphosphate diacylglycerol synthase that is required for phospholipid biosynthesis2. Mutation of RBL1 results in reduced levels of phosphatidylinositol and its derivative phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2). In rice, PtdIns(4,5)P2 is enriched in cellular structures that are specifically associated with effector secretion and fungal infection, suggesting that it has a role as a disease-susceptibility factor3. By using targeted genome editing, we obtained an allele of RBL1, named RBL1Δ12, which confers broad-spectrum disease resistance but does not decrease yield in a model rice variety, as assessed in small-scale field trials. Our study has demonstrated the benefits of editing an LMM gene, a strategy relevant to diverse LMM genes and crops.


Asunto(s)
Diacilglicerol Colinafosfotransferasa , Resistencia a la Enfermedad , Edición Génica , Oryza , Fitomejoramiento , Enfermedades de las Plantas , Resistencia a la Enfermedad/genética , Edición Génica/métodos , Genoma de Planta/genética , Oryza/enzimología , Oryza/genética , Oryza/microbiología , Fosfatidilinositoles/metabolismo , Fitomejoramiento/métodos , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Alelos , Fosfatidilinositol 4,5-Difosfato/metabolismo , Diacilglicerol Colinafosfotransferasa/genética , Diacilglicerol Colinafosfotransferasa/metabolismo
5.
Front Plant Sci ; 14: 1181035, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37324714

RESUMEN

Switchgrass (Panicum virgatum L.) is a promising perennial bioenergy crop that achieves high yields with relatively low nutrient and energy inputs. Modification of cell wall composition for reduced recalcitrance can lower the costs of deconstructing biomass to fermentable sugars and other intermediates. We have engineered overexpression of OsAT10, encoding a rice BAHD acyltransferase and QsuB, encoding dehydroshikimate dehydratase from Corynebacterium glutamicum, to enhance saccharification efficiency in switchgrass. These engineering strategies demonstrated low lignin content, low ferulic acid esters, and increased saccharification yield during greenhouse studies in switchgrass and other plant species. In this work, transgenic switchgrass plants overexpressing either OsAT10 or QsuB were tested in the field in Davis, California, USA for three growing seasons. No significant differences in the content of lignin and cell wall-bound p-coumaric acid or ferulic acid were detected in transgenic OsAT10 lines compared with the untransformed Alamo control variety. However, the transgenic overexpressing QsuB lines had increased biomass yield and slightly increased biomass saccharification properties compared to the control plants. This work demonstrates good performance of engineered plants in the field, and also shows that the cell wall changes in the greenhouse were not replicated in the field, emphasizing the need to validate engineered plants under relevant field conditions.

6.
Plant J ; 115(2): 529-545, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37029760

RESUMEN

The plant secondary cell wall is a thickened matrix of polysaccharides and lignin deposited at the cessation of growth in some cells. It forms the majority of carbon in lignocellulosic biomass, and it is an abundant and renewable source for forage, fiber, materials, fuels, and bioproducts. The complex structure and arrangement of the cell wall polymers mean that the carbon is difficult to access in an economical and sustainable way. One solution is to alter the cell wall polymer structure so that it is more suited to downstream processing. However, it remains difficult to predict what the effects of this engineering will be on the assembly, architecture, and properties of the cell wall. Here, we make use of Arabidopsis plants expressing a suite of genes to increase pectic galactan chain length in the secondary cell wall. Using multi-dimensional solid-state nuclear magnetic resonance, we show that increasing galactan chain length enhances pectin-cellulose spatial contacts and increases cellulose crystallinity. We also found that the increased galactan content leads to fewer spatial contacts of cellulose with xyloglucan and the backbone of pectin. Hence, we propose that the elongated galactan side chains compete with xyloglucan and the pectic backbone for cellulose interactions. Due to the galactan topology, this may result in comparatively weak interactions and disrupt the cell wall architecture. Therefore, introduction of this strategy into trees or other bioenergy crops would benefit from cell-specific expression strategies to avoid negative effects on plant growth.


Asunto(s)
Arabidopsis , Celulosa , Celulosa/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Galactanos/metabolismo , Pectinas/metabolismo , Pared Celular/metabolismo , Carbono/metabolismo
7.
Nat Microbiol ; 8(4): 596-610, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36894634

RESUMEN

Lignocellulose forms plant cell walls, and its three constituent polymers, cellulose, hemicellulose and lignin, represent the largest renewable organic carbon pool in the terrestrial biosphere. Insights into biological lignocellulose deconstruction inform understandings of global carbon sequestration dynamics and provide inspiration for biotechnologies seeking to address the current climate crisis by producing renewable chemicals from plant biomass. Organisms in diverse environments disassemble lignocellulose, and carbohydrate degradation processes are well defined, but biological lignin deconstruction is described only in aerobic systems. It is currently unclear whether anaerobic lignin deconstruction is impossible because of biochemical constraints or, alternatively, has not yet been measured. We applied whole cell-wall nuclear magnetic resonance, gel-permeation chromatography and transcriptome sequencing to interrogate the apparent paradox that anaerobic fungi (Neocallimastigomycetes), well-documented lignocellulose degradation specialists, are unable to modify lignin. We find that Neocallimastigomycetes anaerobically break chemical bonds in grass and hardwood lignins, and we further associate upregulated gene products with the observed lignocellulose deconstruction. These findings alter perceptions of lignin deconstruction by anaerobes and provide opportunities to advance decarbonization biotechnologies that depend on depolymerizing lignocellulose.


Asunto(s)
Celulosa , Lignina , Lignina/metabolismo , Anaerobiosis , Celulosa/metabolismo , Biomasa , Hongos/genética , Hongos/metabolismo
8.
Plant Cell ; 35(1): 139-161, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36377770

RESUMEN

Research into crop yield and resilience has underpinned global food security, evident in yields tripling in the past 5 decades. The challenges that global agriculture now faces are not just to feed 10+ billion people within a generation, but to do so under a harsher, more variable, and less predictable climate, and in many cases with less water, more expensive inputs, and declining soil quality. The challenges of climate change are not simply to breed for a "hotter drier climate," but to enable resilience to floods and droughts and frosts and heat waves, possibly even within a single growing season. How well we prepare for the coming decades of climate variability will depend on our ability to modify current practices, innovate with novel breeding methods, and communicate and work with farming communities to ensure viability and profitability. Here we define how future climates will impact farming systems and growing seasons, thereby identifying the traits and practices needed and including exemplars being implemented and developed. Critically, this review will also consider societal perspectives and public engagement about emerging technologies for climate resilience, with participatory approaches presented as the best approach.


Asunto(s)
Agricultura , Suelo , Fenotipo , Estaciones del Año , Estrés Fisiológico
9.
Plant Cell Environ ; 45(12): 3429-3444, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36222152

RESUMEN

Growth suppression and defence signalling are simultaneous strategies that plants invoke to respond to abiotic stress. Here, we show that the drought stress response of poplar trees (Populus trichocarpa) is initiated by a suppression in cell wall derived methanol (MeOH) emissions and activation of acetic acid (AA) fermentation defences. Temperature sensitive emissions dominated by MeOH (AA/MeOH <30%) were observed from physiologically active leaves, branches, detached stems, leaf cell wall isolations and whole ecosystems. In contrast, drought treatment resulted in a suppression of MeOH emissions and strong enhancement in AA emissions together with volatiles acetaldehyde, ethanol, and acetone. These drought-induced changes coincided with a reduction in stomatal conductance, photosynthesis, transpiration, and leaf water potential. The strong enhancement in AA/MeOH emission ratios during drought (400%-3500%) was associated with an increase in acetate content of whole leaf cell walls, which became significantly 13 C2 -labelled following the delivery of 13 C2 -acetate via the transpiration stream. The results are consistent with both enzymatic and nonenzymatic MeOH and AA production at high temperature in hydrated tissues associated with accelerated primary cell wall growth processes, which are downregulated during drought. While the metabolic source(s) require further investigation, the observations are consistent with drought-induced activation of aerobic fermentation driving high rates of foliar AA emissions and enhancements in leaf cell wall O-acetylation. We suggest that atmospheric AA/MeOH emission ratios could be useful as a highly sensitive signal in studies investigating environmental and biological factors influencing growth-defence trade-offs in plants and ecosystems.


Asunto(s)
Ésteres , Populus , Ésteres/metabolismo , Ecosistema , Estrés Fisiológico , Populus/metabolismo , Sequías , Hojas de la Planta/metabolismo , Metanol/metabolismo , Pared Celular/metabolismo , Agua/metabolismo , Ácido Acético/metabolismo
10.
Microbiome ; 10(1): 183, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36280858

RESUMEN

BACKGROUND: Plant cell walls are interwoven structures recalcitrant to degradation. Native and adapted microbiomes can be particularly effective at plant cell wall deconstruction. Although most understanding of biological cell wall deconstruction has been obtained from isolates, cultivated microbiomes that break down cell walls have emerged as new sources for biotechnologically relevant microbes and enzymes. These microbiomes provide a unique resource to identify key interacting functional microbial groups and to guide the design of specialized synthetic microbial communities. RESULTS: To establish a system assessing comparative microbiome performance, parallel microbiomes were cultivated on sorghum (Sorghum bicolor L. Moench) from compost inocula. Biomass loss and biochemical assays indicated that these microbiomes diverged in their ability to deconstruct biomass. Network reconstructions from gene expression dynamics identified key groups and potential interactions within the adapted sorghum-degrading communities, including Actinotalea, Filomicrobium, and Gemmatimonadetes populations. Functional analysis demonstrated that the microbiomes proceeded through successive stages that are linked to enzymes that deconstruct plant cell wall polymers. The combination of network and functional analysis highlighted the importance of cellulose-degrading Actinobacteria in differentiating the performance of these microbiomes. CONCLUSIONS: The two-tier cultivation of compost-derived microbiomes on sorghum led to the establishment of microbiomes for which community structure and performance could be assessed. The work reinforces the observation that subtle differences in community composition and the genomic content of strains may lead to significant differences in community performance. Video Abstract.


Asunto(s)
Microbiota , Bacterias/genética , Pared Celular , Biomasa , Celulosa/química
11.
J Exp Bot ; 73(18): 6307-6333, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-35788296

RESUMEN

The molecular mechanisms associated with secondary cell wall (SCW) deposition in sorghum remain largely uncharacterized. Here, we employed untargeted metabolomics and large-scale transcriptomics to correlate changes in SCW deposition with variation in global gene expression profiles and metabolite abundance along an elongating internode of sorghum, with a major focus on lignin and phenolic metabolism. To gain deeper insight into the metabolic and transcriptional changes associated with pathway perturbations, a bmr6 mutant [with reduced cinnamyl alcohol dehydrogenase (CAD) activity] was analyzed. In the wild type, internode development was accompanied by an increase in the content of oligolignols, p-hydroxybenzaldehyde, hydroxycinnamate esters, and flavonoid glucosides, including tricin derivatives. We further identified modules of genes whose expression pattern correlated with SCW deposition and the accumulation of these target metabolites. Reduced CAD activity resulted in the accumulation of hexosylated forms of hydroxycinnamates (and their derivatives), hydroxycinnamaldehydes, and benzenoids. The expression of genes belonging to one specific module in our co-expression analysis correlated with the differential accumulation of these compounds and contributed to explaining this metabolic phenotype. Metabolomics and transcriptomics data further suggested that CAD perturbation activates distinct detoxification routes in sorghum internodes. Our systems biology approach provides a landscape of the metabolic and transcriptional changes associated with internode development and with reduced CAD activity in sorghum.


Asunto(s)
Sorghum , Sorghum/genética , Sorghum/metabolismo , Lignina/metabolismo , Regulación de la Expresión Génica de las Plantas , Grano Comestible/metabolismo , Flavonoides/metabolismo , Glucósidos/metabolismo , Ésteres/metabolismo
12.
Plant Cell Physiol ; 63(6): 734-736, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35413114
13.
Comput Struct Biotechnol J ; 20: 1012-1026, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35242291

RESUMEN

The widely used rice variety Lijiangxintuanheigu (LTH) shows a universal susceptibility to thousands of Magnaporthe oryzae isolates, the causal agent of devastating rice blast, making LTH an ideal line in resistance (R) gene cloning. However, the underlying genetic mechanism of the universal susceptibility has not been fully revealed because of the lack of a high-quality genome. Here, we took a genomic approach together with experimental assays to investigate LTH's universal susceptibility to rice blast. Using Nanopore long reads, we assembled a chromosome-level genome. Millions of genomic variants were detected by comparing LTH with 10 other rice varieties, of which large-effect variants could affect plant immunity. Gene family analyses show that the number of R genes and leucine-rich repeat receptor-like protein kinase (LRR-RLK)-encoding genes decrease significantly in LTH. Rice blast resistance genes called Pi genes are either absent or disrupted by genomic variations. Additionally, residual R genes of LTH are likely under weak pathogen selection pressure, and other plant defense-related genes are weakly induced by rice blast. In contrast, the pattern-triggered immunity (PTI) of LTH is normal, as demonstrated by experimental assays. Therefore, we conclude that weak effector-trigger immunity (ETI)-mediated primarily by Pi genes but not PTI results in the universal susceptibility of LTH to rice blast. The attenuated ETI of LTH may be also associated with reduced numbers of R genes and LRR-RLKs, and minimally functional residual defense-related genes. Finally, we demonstrate the use of the LTH genome by rapid cloning of the Pi gene Piak from a resistant variety.

14.
J Exp Bot ; 73(3): 646-664, 2022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-34644381

RESUMEN

Sorghum [Sorghum bicolor (L.) Moench] is the fifth most important cereal crop globally by harvested area and production. Its drought and heat tolerance allow high yields with minimal input. It is a promising biomass crop for the production of biofuels and bioproducts. In addition, as an annual diploid with a relatively small genome compared with other C4 grasses, and excellent germplasm diversity, sorghum is an excellent research species for other C4 crops such as maize. As a result, an increasing number of researchers are looking to test the transferability of findings from other organisms such as Arabidopsis thaliana and Brachypodium distachyon to sorghum, as well as to engineer new biomass sorghum varieties. Here, we provide an overview of sorghum as a multipurpose feedstock crop which can support the growing bioeconomy, and as a monocot research model system. We review what makes sorghum such a successful crop and identify some key traits for future improvement. We assess recent progress in sorghum transformation and highlight how transformation limitations still restrict its widespread adoption. Finally, we summarize available sorghum genetic, genomic, and bioinformatics resources. This review is intended for researchers new to sorghum research, as well as those wishing to include non-food and forage applications in their research.


Asunto(s)
Sorghum , Biomasa , Biotecnología , Sequías , Grano Comestible , Sorghum/genética
15.
Curr Opin Biotechnol ; 73: 246-252, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34563931

RESUMEN

Crewed missions to Mars are planned within the next twenty years. Production of food and materials in situ will eventually be necessary for mission success. This will require the development of crops which can thrive in environments we can sustain in Space. Here, we discuss the challenges we must solve to provide adequate nutrition to support long term Space habitation. Further, we propose that plants are an ideal biomanufacturing platform for producing pharmaceuticals and biomaterials on demand. Designing Space plants requires advances in our ability to engineer plant biology in a predictive manner. Parallel development of suitable tightly controlled growth environments, including extensive monitoring and sensing, will also be a key enabler. Collectively, such research promises to deliver solutions for progressing sustainable closed environment agriculture on Earth.


Asunto(s)
Vuelo Espacial , Agricultura , Productos Agrícolas
17.
Commun Biol ; 4(1): 962, 2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34385583

RESUMEN

Progress in sequencing, microfluidics, and analysis strategies has revolutionized the granularity at which multicellular organisms can be studied. In particular, single-cell transcriptomics has led to fundamental new insights into animal biology, such as the discovery of new cell types and cell type-specific disease processes. However, the application of single-cell approaches to plants, fungi, algae, or bacteria (environmental organisms) has been far more limited, largely due to the challenges posed by polysaccharide walls surrounding these species' cells. In this perspective, we discuss opportunities afforded by single-cell technologies for energy and environmental science and grand challenges that must be tackled to apply these approaches to plants, fungi and algae. We highlight the need to develop better and more comprehensive single-cell technologies, analysis and visualization tools, and tissue preparation methods. We advocate for the creation of a centralized, open-access database to house plant single-cell data. Finally, we consider how such efforts should balance the need for deep characterization of select model species while still capturing the diversity in the plant kingdom. Investments into the development of methods, their application to relevant species, and the creation of resources to support data dissemination will enable groundbreaking insights to propel energy and environmental science forward.


Asunto(s)
Conservación de los Recursos Energéticos/métodos , Bases de Datos como Asunto , Ciencia Ambiental/métodos , Plantas , Análisis de la Célula Individual/métodos , Tecnología/instrumentación
18.
Curr Biol ; 31(11): 2374-2385.e4, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-33857428

RESUMEN

Plant endosymbiosis relies on the development of specialized membranes that encapsulate the endosymbiont and facilitate nutrient exchange. However, the identity and function of lipids within these membrane interfaces is largely unknown. Here, we identify GLUCOSAMINE INOSITOL PHOSPHORYLCERAMIDE TRANSFERASE1 (GINT1) as a sphingolipid glycosyltransferase highly expressed in Medicago truncatula root nodules and roots colonized by arbuscular mycorrhizal (AM) fungi and further demonstrate that this enzyme functions in the synthesis of N-acetyl-glucosamine-decorated glycosyl inositol phosphoryl ceramides (GIPCs) in planta. MtGINT1 expression was developmentally regulated in symbiotic tissues associated with the development of symbiosome and periarbuscular membranes. RNAi silencing of MtGINT1 did not affect overall root growth but strongly impaired nodulation and AM symbiosis, resulting in the senescence of symbiosomes and arbuscules. Our results indicate that, although M. truncatula root sphingolipidome predominantly consists of hexose-decorated GIPCs, local reprogramming of GIPC glycosylation by MtGINT1 is required for the persistence of endosymbionts within the plant cell.


Asunto(s)
Medicago truncatula , Micorrizas , Regulación de la Expresión Génica de las Plantas , Glucosamina , Glicosilación , Inositol , Medicago truncatula/genética , Medicago truncatula/metabolismo , Micorrizas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Esfingolípidos , Simbiosis
19.
Plant Direct ; 5(3): e00309, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33763627

RESUMEN

Glycosylinositolphosphorylceramides (GIPCs) are the predominant lipid in the outer leaflet of the plasma membrane. Characterized GIPC glycosylation mutants have severe or lethal plant phenotypes. However, the function of the glycosylation is unclear. Previously, we characterized Arabidopsis thaliana GONST1 and showed that it was a nucleotide sugar transporter which provides GDP-mannose for GIPC glycosylation. gonst1 has a severe growth phenotype, as well as a constitutive defense response. Here, we characterize a mutant in GONST1's closest homolog, GONST2. The gonst2-1 allele has a minor change to GIPC headgroup glycosylation. Like other reported GIPC glycosylation mutants, gonst1-1gonst2-1 has reduced cellulose, a cell wall polymer that is synthesized at the plasma membrane. The gonst2-1 allele has increased resistance to a biotrophic pathogen Golovinomyces orontii but not the necrotrophic pathogen Botrytis cinerea. Expression of GONST2 under the GONST1 promoter can rescue the gonst1 phenotype, indicating that GONST2 has a similar function to GONST1 in providing GDP-D-Man for GIPC mannosylation.

20.
Nat Nanotechnol ; 16(3): 243-250, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33712738

RESUMEN

CRISPR-Cas genetic engineering of plants holds tremendous potential for providing food security, battling biotic and abiotic crop stresses caused by climate change, and for environmental remediation and sustainability. Since the discovery of CRISPR-Cas technology, its usefulness has been demonstrated widely, including for genome editing in plants. Despite the revolutionary nature of genome-editing tools and the notable progress that these tools have enabled in plant genetic engineering, there remain many challenges for CRISPR applications in plant biotechnology. Nanomaterials could address some of the most critical challenges of CRISPR genome editing in plants through improvements in cargo delivery, species independence, germline transformation and gene editing efficiency. This Perspective identifies major barriers preventing CRISPR-mediated plant genetic engineering from reaching its full potential, and discusses ways that nanoparticle technologies can lower or eliminate these barriers. We also describe advances that are needed in nanotechnology to facilitate and accelerate plant genome editing. Timely advancement of the application of CRISPR technologies in plant engineering is crucial for our ability to feed and sustain the growing human population under a changing global climate.


Asunto(s)
Sistemas CRISPR-Cas/genética , Edición Génica , Nanotecnología/tendencias , Plantas Modificadas Genéticamente/genética , Genoma de Planta/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...