Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Sport Rehabil ; 28(6): 593-600, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-30040015

RESUMEN

CONTEXT: Lateral ankle sprains are a common injury in which the mechanics of injury have been extensively studied. However, the anticipatory mechanisms to ankle inversion perturbations are not well understood. OBJECTIVE: To examine lower-extremity kinematics, including spatial and temporal variables of maximum inversion displacement and maximum inversion velocity, during landings on a tilted surface using a new experimental protocol to replicate a lateral ankle sprain. SETTING: Three-dimensional motion analysis laboratory. PARTICIPANTS: A total of 23 healthy adults. INTERVENTIONS: Participants completed unexpected (UE) and expected (EXP) unilateral landings onto a tilted surface rotated 25° in the frontal plane from a height of 30 cm. MAIN OUTCOME MEASURES: Ankle, knee, and hip kinematics at each discrete time point from 150 ms pre-initial contact (IC) to 150 ms post-IC, in addition to maximum ankle inversion and maximum inversion velocity, were compared between UE and EXP landings. RESULTS: The UE landing produced significantly greater maximum inversion displacement (P < .01) and maximum inversion velocity (P = .02) than the EXP landing. Significantly less ankle inversion and internal rotation were found during pre-IC, whereas during post-IC, significantly greater ankle inversion, ankle internal rotation, knee flexion, and knee abduction were observed for the UE landing (P < .05). In addition, significantly less hip flexion and hip adduction were observed for the UE landing during pre-IC and post-IC (P < .05). CONCLUSIONS: Differences in the UE and EXP landings indicate the experimental protocol presented a UE inversion perturbation that approximates the mechanism of a lateral ankle sprain. Furthermore, knowledge of the inversion perturbation elicited a hip-dominant strategy, which may be utilized to assist with ankle joint stabilization during landing to further protect the lateral ankle from injury.


Asunto(s)
Traumatismos del Tobillo/fisiopatología , Fenómenos Biomecánicos , Rango del Movimiento Articular , Esguinces y Distensiones/fisiopatología , Tobillo , Femenino , Cadera , Humanos , Rodilla , Extremidad Inferior , Masculino , Movimiento , Rotación , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...