Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
J Neurointerv Surg ; 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302420

RESUMEN

BACKGROUND: Outlining acutely infarcted tissue on non-contrast CT is a challenging task for which human inter-reader agreement is limited. We explored two different methods for training a supervised deep learning algorithm: one that used a segmentation defined by majority vote among experts and another that trained randomly on separate individual expert segmentations. METHODS: The data set consisted of 260 non-contrast CT studies in 233 patients with acute ischemic stroke recruited from the multicenter DEFUSE 3 (Endovascular Therapy Following Imaging Evaluation for Ischemic Stroke 3) trial. Additional external validation was performed using 33 patients with matched stroke onset times from the University Hospital Lausanne. A benchmark U-Net was trained on the reference annotations of three experienced neuroradiologists to segment ischemic brain tissue using majority vote and random expert sampling training schemes. The median of volume, overlap, and distance segmentation metrics were determined for agreement in lesion segmentations between (1) three experts, (2) the majority model and each expert, and (3) the random model and each expert. The two sided Wilcoxon signed rank test was used to compare performances (1) to 2) and (1) to (3). We further compared volumes with the 24 hour follow-up diffusion weighted imaging (DWI, final infarct core) and correlations with clinical outcome (modified Rankin Scale (mRS) at 90 days) with the Spearman method. RESULTS: The random model outperformed the inter-expert agreement ((1) to (2)) and the majority model ((1) to (3)) (dice 0.51±0.04 vs 0.36±0.05 (P<0.0001) vs 0.45±0.05 (P<0.0001)). The random model predicted volume correlated with clinical outcome (0.19, P<0.05), whereas the median expert volume and majority model volume did not. There was no significant difference when comparing the volume correlations between random model, median expert volume, and majority model to 24 hour follow-up DWI volume (P>0.05, n=51). CONCLUSION: The random model for ischemic injury delineation on non-contrast CT surpassed the inter-expert agreement ((1) to (2)) and the performance of the majority model ((1) to (3)). We showed that the random model volumetric measures of the model were consistent with 24 hour follow-up DWI.

2.
Med Image Anal ; 93: 103072, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38176356

RESUMEN

Accurate quantification of cerebral blood flow (CBF) is essential for the diagnosis and assessment of a wide range of neurological diseases. Positron emission tomography (PET) with radiolabeled water (15O-water) is the gold-standard for the measurement of CBF in humans, however, it is not widely available due to its prohibitive costs and the use of short-lived radiopharmaceutical tracers that require onsite cyclotron production. Magnetic resonance imaging (MRI), in contrast, is more accessible and does not involve ionizing radiation. This study presents a convolutional encoder-decoder network with attention mechanisms to predict the gold-standard 15O-water PET CBF from multi-contrast MRI scans, thus eliminating the need for radioactive tracers. The model was trained and validated using 5-fold cross-validation in a group of 126 subjects consisting of healthy controls and cerebrovascular disease patients, all of whom underwent simultaneous 15O-water PET/MRI. The results demonstrate that the model can successfully synthesize high-quality PET CBF measurements (with an average SSIM of 0.924 and PSNR of 38.8 dB) and is more accurate compared to concurrent and previous PET synthesis methods. We also demonstrate the clinical significance of the proposed algorithm by evaluating the agreement for identifying the vascular territories with impaired CBF. Such methods may enable more widespread and accurate CBF evaluation in larger cohorts who cannot undergo PET imaging due to radiation concerns, lack of access, or logistic challenges.


Asunto(s)
Encéfalo , Tomografía de Emisión de Positrones , Humanos , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética , Circulación Cerebrovascular , Algoritmos
3.
J Magn Reson Imaging ; 59(4): 1349-1357, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37515518

RESUMEN

BACKGROUND: Cerebrovascular reserve (CVR) reflects the capacity of cerebral blood flow (CBF) to change following a vasodilation challenge. Decreased CVR is associated with a higher stroke risk in patients with cerebrovascular diseases. While revascularization can improve CVR and reduce this risk in adult patients with vasculopathy such as those with Moyamoya disease, its impact on hemodynamics in pediatric patients remains to be elucidated. Arterial spin labeling (ASL) is a quantitative MRI technique that can measure CBF, CVR, and arterial transit time (ATT) non-invasively. PURPOSE: To investigate the short- and long-term changes in hemodynamics after bypass surgeries in patients with Moyamoya disease. STUDY TYPE: Longitudinal. POPULATION: Forty-six patients (11 months-18 years, 28 females) with Moyamoya disease. FIELD STRENGTH/SEQUENCE: 3-T, single- and multi-delay ASL, T1-weighted, T2-FLAIR, 3D MRA. ASSESSMENT: Imaging was performed 2 weeks before and 1 week and 6 months after surgical intervention. Acetazolamide was employed to induce vasodilation during the imaging procedure. CBF and ATT were measured by fitting the ASL data to the general kinetic model. CVR was computed as the percentage change in CBF. The mean CBF, ATT, and CVR values were measured in the regions affected by vasculopathy. STATISTICAL TESTS: Pre- and post-revascularization CVR, CBF, and ATT were compared for different regions of the brain. P-values <0.05 were considered statistically significant. RESULTS: ASL-derived CBF in flow territories affected by vasculopathy significantly increased after bypass by 41 ± 31% within a week. At 6 months, CBF significantly increased by 51 ± 34%, CVR increased by 68 ± 33%, and ATT was significantly reduced by 6.6 ± 2.9%. DATA CONCLUSION: There may be short- and long-term improvement in the hemodynamic parameters of pediatric Moyamoya patients after bypass surgery. EVIDENCE LEVEL: 4 TECHNICAL EFFICACY: Stage 2.


Asunto(s)
Enfermedad de Moyamoya , Adulto , Femenino , Humanos , Niño , Enfermedad de Moyamoya/diagnóstico por imagen , Enfermedad de Moyamoya/cirugía , Imagen por Resonancia Magnética/métodos , Encéfalo , Hemodinámica , Circulación Cerebrovascular/fisiología , Marcadores de Spin
4.
J Nucl Med ; 65(2): 306-312, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38071587

RESUMEN

Cerebral blood flow (CBF) may be estimated from early-frame PET imaging of lipophilic tracers, such as amyloid agents, enabling measurement of this important biomarker in participants with dementia and memory decline. Although previous methods could map relative CBF, quantitative measurement in absolute units (mL/100 g/min) remained challenging and has not been evaluated against the gold standard method of [15O]water PET. The purpose of this study was to develop and validate a minimally invasive quantitative CBF imaging method combining early [18F]florbetaben (eFBB) with phase-contrast MRI using simultaneous PET/MRI. Methods: Twenty participants (11 men and 9 women; 8 cognitively normal, 9 with mild cognitive impairment, and 3 with dementia; 10 ß-amyloid negative and 10 ß-amyloid positive; 69 ± 9 y old) underwent [15O]water PET, phase-contract MRI, and eFBB imaging in a single session on a 3-T PET/MRI scanner. Quantitative CBF images were created from the first 2 min of brain activity after [18F]florbetaben injection combined with phase-contrast MRI measurement of total brain blood flow. These maps were compared with [15O]water CBF using concordance correlation (CC) and Bland-Altman statistics for gray matter, white matter, and individual regions derived from the automated anatomic labeling (AAL) atlas. Results: The 2 methods showed similar results in gray matter ([15O]water, 55.2 ± 14.7 mL/100 g/min; eFBB, 55.9 ± 14.2 mL/100 g/min; difference, 0.7 ± 2.4 mL/100 g/min; P = 0.2) and white matter ([15O]water, 21.4 ± 5.6 mL/100 g/min; eFBB, 21.2 ± 5.3 mL/100 g/min; difference, -0.2 ± 1.0 mL/100 g/min; P = 0.4). The intrasubject CC for AAL-derived regions was high (0.91 ± 0.04). Intersubject CC in different AAL-derived regions was similarly high, ranging from 0.86 for midfrontal regions to 0.98 for temporal regions. There were no significant differences in performance between the methods in the amyloid-positive and amyloid-negative groups as well as participants with different cognitive statuses. Conclusion: We conclude that eFBB PET/MRI can provide robust CBF measurements, highlighting the capability of simultaneous PET/MRI to provide measurements of both CBF and amyloid burden in a single imaging session in participants with memory disorders.


Asunto(s)
Compuestos de Anilina , Disfunción Cognitiva , Demencia , Estilbenos , Masculino , Humanos , Femenino , Agua , Radioisótopos de Oxígeno , Tomografía de Emisión de Positrones/métodos , Imagen por Resonancia Magnética , Disfunción Cognitiva/diagnóstico por imagen , Circulación Cerebrovascular , Encéfalo/diagnóstico por imagen , Encéfalo/irrigación sanguínea
5.
J Magn Reson Imaging ; 59(1): 70-81, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37170640

RESUMEN

Cerebral blood flow (CBF) is an important hemodynamic parameter to evaluate brain health. It can be obtained quantitatively using medical imaging modalities such as magnetic resonance imaging and positron emission tomography (PET). Although CBF in adults has been widely studied and linked with cerebrovascular and neurodegenerative diseases, CBF data in healthy children are sparse due to the challenges in pediatric neuroimaging. An understanding of the factors affecting pediatric CBF and its normal range is crucial to determine the optimal CBF measuring techniques in pediatric neuroradiology. This review focuses on pediatric CBF studies using neuroimaging techniques in 32 articles including 2668 normal subjects ranging from birth to 18 years old. A systematic literature search was conducted in PubMed, Embase, and Scopus and reported following the preferred reporting items for systematic reviews and meta-analyses (PRISMA). We identified factors (such as age, gender, mood, sedation, and fitness) that have significant effects on pediatric CBF quantification. We also investigated factors influencing the CBF measurements in infants. Based on this review, we recommend best practices to improve CBF measurements in pediatric neuroimaging. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 2.


Asunto(s)
Imagen por Resonancia Magnética , Neuroimagen , Adulto , Lactante , Humanos , Niño , Neuroimagen/métodos , Imagen por Resonancia Magnética/métodos , Tomografía de Emisión de Positrones/métodos , Encéfalo/diagnóstico por imagen , Circulación Cerebrovascular/fisiología , Marcadores de Spin
6.
Ann Neurol ; 94(3): 457-469, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37306544

RESUMEN

OBJECTIVE: Repetitive head trauma is common in high-contact sports. Cerebral blood flow (CBF) can measure changes in brain perfusion that could indicate injury. Longitudinal studies with a control group are necessary to account for interindividual and developmental effects. We investigated whether exposure to head impacts causes longitudinal CBF changes. METHODS: We prospectively studied 63 American football (high-contact cohort) and 34 volleyball (low-contact controls) male collegiate athletes, tracking CBF using 3D pseudocontinuous arterial spin labeling magnetic resonance imaging for up to 4 years. Regional relative CBF (rCBF, normalized to cerebellar CBF) was computed after co-registering to T1-weighted images. A linear mixed effects model assessed the relationship of rCBF to sport, time, and their interaction. Within football players, we modeled rCBF against position-based head impact risk and baseline Standardized Concussion Assessment Tool score. Additionally, we evaluated early (1-5 days) and delayed (3-6 months) post-concussion rCBF changes (in-study concussion). RESULTS: Supratentorial gray matter rCBF declined in football compared with volleyball (sport-time interaction p = 0.012), with a strong effect in the parietal lobe (p = 0.002). Football players with higher position-based impact-risk had lower occipital rCBF over time (interaction p = 0.005), whereas players with lower baseline Standardized Concussion Assessment Tool score (worse performance) had relatively decreased rCBF in the cingulate-insula over time (interaction effect p = 0.007). Both cohorts showed a left-right rCBF asymmetry that decreased over time. Football players with an in-study concussion showed an early increase in occipital lobe rCBF (p = 0.0166). INTERPRETATION: These results suggest head impacts may result in an early increase in rCBF, but cumulatively a long-term decrease in rCBF. ANN NEUROL 2023;94:457-469.


Asunto(s)
Conmoción Encefálica , Fútbol Americano , Humanos , Masculino , Conmoción Encefálica/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Fútbol Americano/lesiones , Imagen por Resonancia Magnética , Circulación Cerebrovascular/fisiología
7.
J Vis Exp ; (195)2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37318243

RESUMEN

T2* relaxometry is one of the established methods to measure the effect of superparamagnetic iron oxide nanoparticles on tumor tissues with magnetic resonance imaging (MRI). Iron oxide nanoparticles shorten the T1, T2, and T2* relaxation times of tumors. While the T1 effect is variable based on the size and composition of the nanoparticles, the T2 and T2* effects are usually predominant, and T2* measurements are the most time-efficient in a clinical context. Here, we present our approach to measuring tumor T2* relaxation times, using multi-echo gradient echo sequences, external software, and a standardized protocol for creating a T2* map with scanner-independent software. This facilitates the comparison of imaging data from different clinical scanners, different vendors, and co-clinical research work (i.e., tumor T2* data obtained in mouse models and patients). Once the software is installed, the T2 Fit Map plugin needs to be installed from the plugin manager. This protocol provides step-by-step procedural details, from importing the multi-echo gradient echo sequences into the software, to creating color-coded T2* maps and measuring tumor T2* relaxation times. The protocol can be applied to solid tumors in any body part and has been validated based on preclinical imaging data and clinical data in patients. This could facilitate tumor T2* measurements for multi-center clinical trials and improve the standardization and reproducibility of tumor T2* measurements in co-clinical and multi-center data analyses.


Asunto(s)
Imagen por Resonancia Magnética , Neoplasias , Ratones , Animales , Reproducibilidad de los Resultados , Imagen por Resonancia Magnética/métodos , Neoplasias/diagnóstico por imagen , Programas Informáticos , Nanopartículas Magnéticas de Óxido de Hierro
8.
J Neurosci Res ; 101(7): 1086-1097, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36967233

RESUMEN

One-third of boys with X-linked adrenoleukodystrophy (ALD) develop inflammatory demyelinating lesions, typically at the splenium. These lesions share similarities with multiple sclerosis, including cerebral hypoperfusion and links to vitamin D insufficiency. We hypothesized that increasing vitamin D levels would increase cerebral blood flow (CBF) in ALD boys. We conducted an exploratory analysis of vitamin D supplementation and CBF using all available data from participants enrolled in a recent single-arm interventional study of vitamin D supplementation in boys with ALD. We measured whole brain and splenium CBF using arterial spin labeling (ASL) from three study time points (baseline, 6 months, and 12 months). We used linear generalized estimating equations to evaluate CBF changes between time points and to test for an association between CBF and vitamin D. ASL data were available for 16 participants, aged 2-22 years. Mean vitamin D levels increased by 72.7% (p < .001) after 6 months and 88.6% (p < .01) after 12 months. Relative to baseline measures, mean CBF of the whole brain (6 months: +2.5%, p = .57; 12 months: +6.1%, p = .18) and splenium (6 months: +1.2%, p = .80; 12 months: +7.4%, p = .058) were not significantly changed. Vitamin D levels were positively correlated with CBF in the splenium (slope = .59, p < .001). In this exploratory analysis, we observed a correlation between vitamin D levels and splenial CBF in ALD boys. We confirm the feasibility of measuring CBF in this brain region and population, but further work is needed to establish a causal role for vitamin D in modulating CBF.


Asunto(s)
Adrenoleucodistrofia , Humanos , Masculino , Adrenoleucodistrofia/tratamiento farmacológico , Encéfalo/diagnóstico por imagen , Encéfalo/irrigación sanguínea , Circulación Cerebrovascular/fisiología , Marcadores de Spin , Vitamina D , Suplementos Dietéticos , Imagen por Resonancia Magnética
9.
Eur Radiol ; 33(8): 5728-5739, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36847835

RESUMEN

OBJECTIVES: Treatment and outcomes of acute stroke have been revolutionised by mechanical thrombectomy. Deep learning has shown great promise in diagnostics but applications in video and interventional radiology lag behind. We aimed to develop a model that takes as input digital subtraction angiography (DSA) videos and classifies the video according to (1) the presence of large vessel occlusion (LVO), (2) the location of the occlusion, and (3) the efficacy of reperfusion. METHODS: All patients who underwent DSA for anterior circulation acute ischaemic stroke between 2012 and 2019 were included. Consecutive normal studies were included to balance classes. An external validation (EV) dataset was collected from another institution. The trained model was also used on DSA videos post mechanical thrombectomy to assess thrombectomy efficacy. RESULTS: In total, 1024 videos comprising 287 patients were included (44 for EV). Occlusion identification was achieved with 100% sensitivity and 91.67% specificity (EV 91.30% and 81.82%). Accuracy of location classification was 71% for ICA, 84% for M1, and 78% for M2 occlusions (EV 73, 25, and 50%). For post-thrombectomy DSA (n = 194), the model identified successful reperfusion with 100%, 88%, and 35% for ICA, M1, and M2 occlusion (EV 89, 88, and 60%). The model could also perform classification of post-intervention videos as mTICI < 3 with an AUC of 0.71. CONCLUSIONS: Our model can successfully identify normal DSA studies from those with LVO and classify thrombectomy outcome and solve a clinical radiology problem with two temporal elements (dynamic video and pre and post intervention). KEY POINTS: • DEEP MOVEMENT represents a novel application of a model applied to acute stroke imaging to handle two types of temporal complexity, dynamic video and pre and post intervention. • The model takes as an input digital subtraction angiograms of the anterior cerebral circulation and classifies according to (1) the presence or absence of large vessel occlusion, (2) the location of the occlusion, and (3) the efficacy of thrombectomy. • Potential clinical utility lies in providing decision support via rapid interpretation (pre thrombectomy) and automated objective gradation of thrombectomy outcomes (post thrombectomy).


Asunto(s)
Isquemia Encefálica , Aprendizaje Profundo , Procedimientos Endovasculares , Accidente Cerebrovascular , Humanos , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/cirugía , Películas Cinematográficas , Estudios Retrospectivos , Trombectomía/métodos , Resultado del Tratamiento , Procedimientos Endovasculares/métodos
10.
Invest Radiol ; 58(6): 388-395, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36729074

RESUMEN

OBJECTIVES: Iron oxide nanoparticles have been used to track the accumulation of chimeric antigen receptor (CAR) T cells with magnetic resonance imaging (MRI). However, the only nanoparticle available for clinical applications to date, ferumoxytol, has caused rare but severe anaphylactic reactions. MegaPro nanoparticles (MegaPro-NPs) provide an improved safety profile. We evaluated whether MegaPro-NPs can be applied for in vivo tracking of CAR T cells in a mouse model of glioblastoma multiforme. MATERIALS AND METHODS: We labeled tumor-targeted CD70CAR (8R-70CAR) T cells and non-tumor-targeted controls with MegaPro-NPs, followed by inductively coupled plasma optical emission spectroscopy, Prussian blue staining, and cell viability assays. Next, we treated 42 NRG mice bearing U87-MG/eGFP-fLuc glioblastoma multiforme xenografts with MegaPro-NP-labeled/unlabeled CAR T cells or labeled untargeted T cells and performed serial MRI, magnetic particle imaging, and histology studies. The Kruskal-Wallis test was conducted to evaluate overall group differences, and the Mann-Whitney U test was applied to compare the pairs of groups. RESULTS: MegaPro-NP-labeled CAR T cells demonstrated significantly increased iron uptake compared with unlabeled controls ( P < 0.01). Cell viability, activation, and exhaustion markers were not significantly different between the 2 groups ( P > 0.05). In vivo, tumor T2* relaxation times were significantly lower after treatment with MegaPro-NP-labeled CAR T cells compared with untargeted T cells ( P < 0.01). There is no significant difference in tumor growth inhibition between mice injected with labeled and unlabeled CAR T cells. CONCLUSIONS: MegaPro-NPs can be used for in vivo tracking of CAR T cells. Because MegaPro-NPs recently completed phase II clinical trial investigation as an MRI contrast agent, MegaPro-NP is expected to be applied to track CAR T cells in cancer immunotherapy trials in the near future.


Asunto(s)
Glioblastoma , Receptores Quiméricos de Antígenos , Ratones , Humanos , Animales , Glioblastoma/terapia , Imagen por Resonancia Magnética/métodos , Medios de Contraste , Linfocitos T , Línea Celular Tumoral
11.
J Cereb Blood Flow Metab ; 43(2_suppl): 138-151, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-36408536

RESUMEN

Cerebrovascular reserve (CVR) reflects the capacity of cerebral blood flow (CBF) to change. Decreased CVR implies poor hemodynamics and is linked to a higher risk for stroke. Revascularization has been shown to improve CBF in patients with vasculopathy such as Moyamoya disease. Dynamic susceptibility contrast (DSC) can measure transit time to evaluate patients suspected of stroke. Arterial spin labeling (ASL) is a non-invasive technique for CBF, CVR, and arterial transit time (ATT) measurements. Here, we investigate the change in hemodynamics 4-12 months after extracranial-to-intracranial direct bypass in 52 Moyamoya patients using ASL with single and multiple post-labeling delays (PLD). Images were collected using ASL and DSC with acetazolamide. CVR, CBF, ATT, and time-to-maximum (Tmax) were measured in different flow territories. Results showed that hemodynamics improved significantly in regions affected by arterial occlusions after revascularization. CVR increased by 16 ± 11% (p < 0.01) and 25 ± 13% (p < 0.01) for single- and multi-PLD ASL, respectively. Transit time measured by multi-PLD ASL and post-vasodilation DSC reduced by 13 ± 7% (p < 0.01) and 9 ± 5% (p < 0.01), respectively. For all regions, ATT correlated significantly with Tmax (R2 = 0.59, p < 0.01). Thus, revascularization improved CVR and decreased transit times. Multi-PLD ASL can serve as an effective and non-invasive modality to examine vascular hemodynamics in Moyamoya patients.


Asunto(s)
Enfermedad de Moyamoya , Accidente Cerebrovascular , Humanos , Enfermedad de Moyamoya/diagnóstico por imagen , Enfermedad de Moyamoya/cirugía , Imagen por Resonancia Magnética/métodos , Arterias , Hemodinámica , Circulación Cerebrovascular/fisiología , Marcadores de Spin
12.
J Cereb Blood Flow Metab ; 42(8): 1493-1506, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35236136

RESUMEN

Cerebrovascular reactivity (CVR) reflects the CBF change to meet different physiological demands. The reference CVR technique is PET imaging with vasodilators but is inaccessible to most patients. DSC can measure transit time to evaluate patients suspected of stroke, but the use of gadolinium may cause side-effects. Arterial spin labeling (ASL) is a non-invasive MRI technique for CBF measurements. Here, we investigate the effectiveness of ASL with single and multiple post labeling delays (PLD) to replace PET and DSC for CVR and transit time mapping in 26 Moyamoya patients. Images were collected using simultaneous PET/MRI with acetazolamide. CVR, CBF, arterial transit time (ATT), and time-to-maximum (Tmax) were measured in different flow territories. Results showed that CVR was lower in occluded regions than normal regions (by 68 ± 12%, 52 ± 5%, and 56 ± 9%, for PET, single- and multi-PLD PCASL, respectively, all p < 0.05). Multi-PLD PCASL correlated slightly higher with PET (CCC = 0.36 and 0.32 in affected and unaffected territories respectively). Vasodilation caused ATT to reduce by 4.5 ± 3.1% (p < 0.01) in occluded regions. ATT correlated significantly with Tmax (R2 > 0.35, p < 0.01). Therefore, multi-PLD ASL is recommended for CVR studies due to its high agreement with the reference PET technique and the capability of measuring transit time.


Asunto(s)
Enfermedad de Moyamoya , Circulación Cerebrovascular/fisiología , Humanos , Imagen por Resonancia Magnética/métodos , Enfermedad de Moyamoya/diagnóstico por imagen , Tomografía de Emisión de Positrones , Marcadores de Spin
13.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35101971

RESUMEN

Metastatic osteosarcoma has a poor prognosis with a 2-y, event-free survival rate of ∼15 to 20%, highlighting the need for the advancement of efficacious therapeutics. Chimeric antigen receptor (CAR) T-cell therapy is a potent strategy for eliminating tumors by harnessing the immune system. However, clinical trials with CAR T cells in solid tumors have encountered significant challenges and have not yet demonstrated convincing evidence of efficacy for a large number of patients. A major bottleneck for the success of CAR T-cell therapy is our inability to monitor the accumulation of the CAR T cells in the tumor with clinical-imaging techniques. To address this, we developed a clinically translatable approach for labeling CAR T cells with iron oxide nanoparticles, which enabled the noninvasive detection of the iron-labeled T cells with magnetic resonance imaging (MRI), photoacoustic imaging (PAT), and magnetic particle imaging (MPI). Using a custom-made microfluidics device for T-cell labeling by mechanoporation, we achieved significant nanoparticle uptake in the CAR T cells, while preserving T-cell proliferation, viability, and function. Multimodal MRI, PAT, and MPI demonstrated homing of the T cells to osteosarcomas and off-target sites in animals administered with T cells labeled with the iron oxide nanoparticles, while T cells were not visualized in animals infused with unlabeled cells. This study details the successful labeling of CAR T cells with ferumoxytol, thereby paving the way for monitoring CAR T cells in solid tumors.


Asunto(s)
Neoplasias Óseas , Óxido Ferrosoférrico/farmacología , Inmunoterapia Adoptiva , Imagen por Resonancia Magnética , Nanopartículas/uso terapéutico , Neoplasias Experimentales , Osteosarcoma , Receptores Quiméricos de Antígenos/inmunología , Linfocitos T/inmunología , Animales , Neoplasias Óseas/diagnóstico por imagen , Neoplasias Óseas/inmunología , Neoplasias Óseas/terapia , Ratones , Neoplasias Experimentales/diagnóstico por imagen , Neoplasias Experimentales/inmunología , Neoplasias Experimentales/terapia , Osteosarcoma/diagnóstico por imagen , Osteosarcoma/inmunología , Osteosarcoma/terapia
14.
Pediatr Radiol ; 52(2): 354-366, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34046709

RESUMEN

Gadolinium chelates have been used as standard contrast agents for clinical MRI for several decades. However, several investigators recently reported that rare Earth metals such as gadolinium are deposited in the brain for months or years. This is particularly concerning for children, whose developing brain is more vulnerable to exogenous toxins compared to adults. Therefore, a search is under way for alternative MR imaging biomarkers. The United States Food and Drug Administration (FDA)-approved iron supplement ferumoxytol can solve this unmet clinical need: ferumoxytol consists of iron oxide nanoparticles that can be detected with MRI and provide significant T1- and T2-signal enhancement of vessels and soft tissues. Several investigators including our research group have started to use ferumoxytol off-label as a new contrast agent for MRI. This article reviews the existing literature on the biodistribution of ferumoxytol in children and compares the diagnostic accuracy of ferumoxytol- and gadolinium-chelate-enhanced MRI. Iron oxide nanoparticles represent a promising new class of contrast agents for pediatric MRI that can be metabolized and are not deposited in the brain.


Asunto(s)
Óxido Ferrosoférrico , Gadolinio , Adulto , Niño , Medios de Contraste , Humanos , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Distribución Tisular
15.
IEEE J Biomed Health Inform ; 26(6): 2570-2581, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34910645

RESUMEN

Automatic segmentation of lung nodules on computed tomography (CT) images is challenging owing to the variability of morphology, location, and intensity. In addition, few segmentation methods can capture intra-nodular heterogeneity to assist lung nodule diagnosis. In this study, we propose an end-to-end architecture to perform fully automated segmentation of multiple types of lung nodules and generate intra-nodular heterogeneity images for clinical use. To this end, a hybrid loss is considered by introducing a Faster R-CNN model based on generalized intersection over union loss in generative adversarial network. The Lung Image Database Consortium image collection dataset, comprising 2,635 lung nodules, was combined with 3,200 lung nodules from five hospitals for this study. Compared with manual segmentation by radiologists, the proposed model obtained an average dice coefficient (DC) of 82.05% on the test dataset. Compared with U-net, NoduleNet, nnU-net, and other three models, the proposed method achieved comparable performance on lung nodule segmentation and generated more vivid and valid intra-nodular heterogeneity images, which are beneficial in radiological diagnosis. In an external test of 91 patients from another hospital, the proposed model achieved an average DC of 81.61%. The proposed method effectively addresses the challenges of inevitable human interaction and additional pre-processing procedures in the existing solutions for lung nodule segmentation. In addition, the results show that the intra-nodular heterogeneity images generated by the proposed model are suitable to facilitate lung nodule diagnosis in radiology.


Asunto(s)
Neoplasias Pulmonares , Bases de Datos Factuales , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Pulmón/diagnóstico por imagen , Neoplasias Pulmonares/diagnóstico por imagen , Tórax , Tomografía Computarizada por Rayos X/métodos
16.
J Cereb Blood Flow Metab ; 42(5): 700-717, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34806918

RESUMEN

Cerebrovascular reactivity (CVR), the capacity of the brain to increase cerebral blood flow (CBF) to meet changes in physiological demand, is an important biomarker to evaluate brain health. Typically, this brain "stress test" is performed by using a medical imaging modality to measure the CBF change between two states: at baseline and after vasodilation. However, since there are many imaging modalities and many ways to augment CBF, a wide range of CVR values have been reported. An understanding of CVR reproducibility is critical to determine the most reliable methods to measure CVR as a clinical biomarker. This review focuses on CVR reproducibility studies using neuroimaging techniques in 32 articles comprising 427 total subjects. The literature search was performed in PubMed, Embase, and Scopus. The review was conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). We identified 5 factors of the experimental subjects (such as sex, blood characteristics, and smoking) and 9 factors of the measuring technique (such as the imaging modality, the type of the vasodilator, and the quantification method) that have strong effects on CVR reproducibility. Based on this review, we recommend several best practices to improve the reproducibility of CVR quantification in neuroimaging studies.


Asunto(s)
Encéfalo , Circulación Cerebrovascular , Encéfalo/irrigación sanguínea , Encéfalo/diagnóstico por imagen , Circulación Cerebrovascular/fisiología , Humanos , Imagen por Resonancia Magnética/métodos , Neuroimagen , Reproducibilidad de los Resultados , Vasodilatación/fisiología
17.
Radiol Artif Intell ; 3(6): e200232, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34870211

RESUMEN

PURPOSE: To investigate if a deep learning convolutional neural network (CNN) could enable low-dose fluorine 18 (18F) fluorodeoxyglucose (FDG) PET/MRI for correct treatment response assessment of children and young adults with lymphoma. MATERIALS AND METHODS: In this secondary analysis of prospectively collected data (ClinicalTrials.gov identifier: NCT01542879), 20 patients with lymphoma (mean age, 16.4 years ± 6.4 [standard deviation]) underwent 18F-FDG PET/MRI between July 2015 and August 2019 at baseline and after induction chemotherapy. Full-dose 18F-FDG PET data (3 MBq/kg) were simulated to lower 18F-FDG doses based on the percentage of coincidence events (representing simulated 75%, 50%, 25%, 12.5%, and 6.25% 18F-FDG dose [hereafter referred to as 75%Sim, 50%Sim, 25%Sim, 12.5%Sim, and 6.25%Sim, respectively]). A U.S. Food and Drug Administration-approved CNN was used to augment input simulated low-dose scans to full-dose scans. For each follow-up scan after induction chemotherapy, the standardized uptake value (SUV) response score was calculated as the maximum SUV (SUVmax) of the tumor normalized to the mean liver SUV; tumor response was classified as adequate or inadequate. Sensitivity and specificity in the detection of correct response status were computed using full-dose PET as the reference standard. RESULTS: With decreasing simulated radiotracer doses, tumor SUVmax increased. A dose below 75%Sim of the full dose led to erroneous upstaging of adequate responders to inadequate responders (43% [six of 14 patients] for 75%Sim; 93% [13 of 14 patients] for 50%Sim; and 100% [14 of 14 patients] below 50%Sim; P < .05 for all). CNN-enhanced low-dose PET/MRI scans at 75%Sim and 50%Sim enabled correct response assessments for all patients. Use of the CNN augmentation for assessing adequate and inadequate responses resulted in identical sensitivities (100%) and specificities (100%) between the assessment of 100% full-dose PET, augmented 75%Sim, and augmented 50%Sim images. CONCLUSION: CNN enhancement of PET/MRI scans may enable 50% 18F-FDG dose reduction with correct treatment response assessment of children and young adults with lymphoma.Keywords: Pediatrics, PET/MRI, Computer Applications Detection/Diagnosis, Lymphoma, Tumor Response, Whole-Body Imaging, Technology AssessmentClinical trial registration no: NCT01542879 Supplemental material is available for this article. © RSNA, 2021.

18.
Sci Rep ; 11(1): 5710, 2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33707521

RESUMEN

The prognosis for high-grade glioma (HGG) remains dismal and the extent of resection correlates with overall survival and progression free disease. Epidermal growth factor receptor (EGFR) is a biomarker heterogeneously expressed in HGG. We assessed the feasibility of detecting HGG using near-infrared fluorescent antibody targeting EGFR. Mice bearing orthotopic HGG xenografts with modest EGFR expression were imaged in vivo after systemic panitumumab-IRDye800 injection to assess its tumor-specific uptake macroscopically over 14 days, and microscopically ex vivo. EGFR immunohistochemical staining of 59 tumor specimens from 35 HGG patients was scored by pathologists and expression levels were compared to that of mouse xenografts. Intratumoral distribution of panitumumab-IRDye800 correlated with near-infrared fluorescence and EGFR expression. Fluorescence distinguished tumor cells with 90% specificity and 82.5% sensitivity. Target-to-background ratios peaked at 14 h post panitumumab-IRDye800 infusion, reaching 19.5 in vivo and 7.6 ex vivo, respectively. Equivalent or higher EGFR protein expression compared to the mouse xenografts was present in 77.1% HGG patients. Age, combined with IDH-wildtype cerebral tumor, was predictive of greater EGFR protein expression in human tumors. Tumor specific uptake of panitumumab-IRDye800 provided remarkable contrast and a flexible imaging window for fluorescence-guided identification of HGGs despite modest EGFR expression.


Asunto(s)
Receptores ErbB/inmunología , Técnica del Anticuerpo Fluorescente , Glioma/diagnóstico por imagen , Glioma/patología , Imagen Molecular , Adolescente , Adulto , Anciano , Animales , Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Niño , Preescolar , Medios de Contraste/química , Femenino , Humanos , Indoles/farmacocinética , Indoles/farmacología , Lactante , Masculino , Ratones , Persona de Mediana Edad , Clasificación del Tumor , Panitumumab/farmacocinética , Panitumumab/farmacología , Distribución Tisular/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Adulto Joven
19.
Neuroradiology ; 63(2): 243-251, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32945913

RESUMEN

PURPOSE: 3D multi-echo gradient-recalled echo (ME-GRE) can simultaneously generate time-of-flight magnetic resonance angiography (pTOF) in addition to T2*-based susceptibility-weighted images (SWI). We assessed the clinical performance of pTOF generated from a 3D ME-GRE acquisition compared with conventional TOF-MRA (cTOF). METHODS: Eighty consecutive children were retrospectively identified who obtained 3D ME-GRE alongside cTOF. Two blinded readers independently assessed pTOF derived from 3D ME-GRE and compared them with cTOF. A 5-point Likert scale was used to rank lesion conspicuity and to assess for diagnostic confidence. RESULTS: Across 80 pediatric neurovascular pathologies, a similar number of lesions were reported on pTOF and cTOF (43-40%, respectively, p > 0.05). Rating of lesion conspicuity was higher with cTOF (4.5 ± 1.0) as compared with pTOF (4.0 ± 0.7), but this was not significantly different (p = 0.06). Diagnostic confidence was rated higher with cTOF (4.8 ± 0.5) than that of pTOF (3.7 ± 0.6; p < 0.001). Overall, the inter-rater agreement between two readers for lesion count on pTOF was classified as almost perfect (κ = 0.98, 96% CI 0.8-1.0). CONCLUSIONS: In this study, TOF-MRA simultaneously generated in addition to SWI from 3D MR-GRE can serve as a diagnostic adjunct, particularly for proximal vessel disease and when conventional TOF-MRA images are absent.


Asunto(s)
Trastornos Cerebrovasculares , Angiografía por Resonancia Magnética , Imagen por Resonancia Magnética , Trastornos Cerebrovasculares/diagnóstico por imagen , Niño , Humanos , Estudios Retrospectivos
20.
Radiology ; 297(2): 438-446, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32930651

RESUMEN

Background Iron oxide nanoparticles are an alternative contrast agent for MRI. Gadolinium deposition has raised safety concerns, but it is unknown whether ferumoxytol administration also deposits in the brain. Purpose To investigate whether there are signal intensity changes in the brain at multiecho gradient imaging following ferumoxytol exposure in children and young adults. Materials and Methods This retrospective case-control study included children and young adults, matched for age and sex, with brain arteriovenous malformations who received at least one dose of ferumoxytol from January 2014 to January 2018. In participants who underwent at least two brain MRI examinations (subgroup), the first and last available examinations were analyzed. Regions of interests were placed around deep gray structures on quantitative susceptibility mapping and R2* images. Mean susceptibility and R2* values of regions of interests were recorded. Measurements were assessed by linear regression analyses: a between-group comparison of ferumoxytol-exposed and unexposed participants and a within-group (subgroup) comparison before and after exposure. Results Seventeen participants (mean age ± standard deviation, 13 years ± 5; nine male) were in the ferumoxytol-exposed (case) group, 21 (mean age, 14 years ± 5; 11 male) were in the control group, and nine (mean age, 12 years ± 6; four male) were in the subgroup. The mean number of ferumoxytol administrations was 2 ± 1 (range, one to four). Mean susceptibility (in parts per million [ppm]) and R2* (in inverse seconds [sec-1]) values of the dentate (case participants: 0.06 ppm ± 0.04 and 23.87 sec-1 ± 4.13; control participants: 0.02 ppm ± 0.03 and 21.7 sec-1 ± 5.26), substantia nigrae (case participants: 0.08 ppm ± 0.06 and 27.46 sec-1 ± 5.58; control participants: 0.04 ppm ± 0.05 and 24.96 sec-1 ± 5.3), globus pallidi (case participants: 0.14 ppm ± 0.05 and 30.75 sec-1 ± 5.14; control participants: 0.08 ppm ± 0.07 and 28.82 sec-1 ± 6.62), putamina (case participants: 0.03 ppm ± 0.02 and 20.63 sec-1 ± 2.44; control participants: 0.02 ppm ± 0.02 and 19.65 sec-1 ± 3.6), caudate (case participants: -0.1 ppm ± 0.04 and 18.21 sec-1 ± 3.1; control participants: -0.06 ppm ± 0.05 and 18.83 sec-1 ± 3.32), and thalami (case participants: 0 ppm ± 0.03 and 16.49 sec-1 ± 3.6; control participants: 0.02 ppm ± 0.02 and 18.38 sec-1 ± 2.09) did not differ between groups (susceptibility, P = .21; R2*, P = .24). For the subgroup, the mean interval between the first and last ferumoxytol administration was 14 months ± 8 (range, 1-25 months). Mean susceptibility and R2* values of the dentate (first MRI: 0.06 ppm ± 0.05 and 25.78 sec-1 ± 5.9; last MRI: 0.06 ppm ± 0.02 and 25.55 sec-1 ± 4.71), substantia nigrae (first MRI: 0.06 ppm ± 0.06 and 28.26 sec-1 ± 9.56; last MRI: 0.07 ppm ± 0.06 and 25.65 sec-1 ± 6.37), globus pallidi (first MRI: 0.13 ppm ± 0.07 and 27.53 sec-1 ± 8.88; last MRI: 0.14 ppm ± 0.06 and 29.78 sec-1 ± 6.54), putamina (first MRI: 0.03 ppm ± 0.03 and 19.78 sec-1 ± 3.51; last MRI: 0.03 ppm ± 0.02 and 19.73 sec-1 ± 3.01), caudate (first MRI: -0.09 ppm ± 0.05 and 21.38 sec-1 ± 4.72; last MRI: -0.1 ppm ± 0.05 and 18.75 sec-1 ± 2.68), and thalami (first MRI: 0.01 ppm ± 0.02 and 17.65 sec-1 ± 5.16; last MRI: 0 ppm ± 0.02 and 15.32 sec-1 ± 2.49) did not differ between the first and last MRI examinations (susceptibility, P = .95; R2*, P = .54). Conclusion No overall significant differences were found in susceptibility and R2* values of deep gray structures to suggest retained iron in the brain between ferumoxytol-exposed and unexposed children and young adults with arteriovenous malformations and in those exposed to ferumoxytol over time. © RSNA, 2020.


Asunto(s)
Malformaciones Arteriovenosas/diagnóstico por imagen , Encéfalo/metabolismo , Medios de Contraste/administración & dosificación , Óxido Ferrosoférrico/administración & dosificación , Hierro/metabolismo , Imagen por Resonancia Magnética/métodos , Adolescente , Estudios de Casos y Controles , Niño , Preescolar , Femenino , Humanos , Masculino , Estudios Retrospectivos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...