Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Gen Comp Endocrinol ; 331: 114118, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36037874

RESUMEN

Marphysa madrasi is a commercially valuable maturation diet in crustacean aquaculture. This study presents the first detailed investigation of oogenesis in the intertidal polychaete worm M. madrasi and reports the steroid profile during oocyte growth and development. Oogenesis is extraovarian type I, originating from coelomic epithelial cells, with four stages of development - primary growth, early vitellogenic, late vitellogenic, and maturation. The primary growth phase contains oogonial cells and previtellogenic oocyte clusters in the early, mid, and late stages of development form a dispersed ovary attached to blood vessels. The late previtellogenic oocytes detach from the ovary at the onset of vitellogenesis. The detached oocytes complete vitellogenesis and final maturation in the coelomic fluid as solitary free-floating cells without any connection with follicle cells. The worms display asynchronous reproduction with a heterogeneous population of developing oocytes. Steroid extracts from the polychaete homogenates in different stages of oogenesis were identified by HPLC and confirmed by LC-MS/MS. In M. madrasi, two vertebrate-type steroids, pregnenolone (P5) and 17α-hydroxyprogesterone (17-OHP) were detected and quantified. The P5 levels were low in immature worms but increased significantly by ∼ 8.3-fold in the previtellogenic stage and peaked during oocyte maturation. 17-OHP levels were low in immature worms but gradually increase as the oogenesis progress to the primary growth and early vitellogenic phase, with a significant increase (p < 0.001) during the late vitellogenic phase. Although an increase in the concentration of P5 and 17-OHP during vitellogenesis and maturation of oocytes points to a possible role in reproduction, the absence of other vertebrate-type steroids in the investigated polychaete signifies a plausible uptake of P5 and 17-OHP from the environment.


Asunto(s)
Poliquetos , Animales , Femenino , Cromatografía Liquida , Espectrometría de Masas en Tándem , Oogénesis , Vitelogénesis , Oocitos , Hormonas Esteroides Gonadales , Esteroides
2.
Artículo en Inglés | MEDLINE | ID: mdl-34781023

RESUMEN

Challenges in the aquatic environment disrupt the homeostasis mechanisms of many teleost fishes. Induction of stress affects the circulating levels of catecholamine and has an impact on development and reproduction. It is not known how osmotic and hypoxic stress could affect the catecholamine and serotonin levels in zebrafish despite its well-known action in the vertebrate brain. This study thus investigates how serotonin (5-HT), epinephrine (E), norepinephrine (NE), and dopamine (DA) in the brain of female zebrafish respond to hypoxic (air) and osmotic conditions (salinity of 10 ppt). Analysis of zebrafish brain utilizing HPLC with PDA detector using reverse-phase PrimeSep column indicated that osmotic stress, air response and its combination modified 5-HT, NE and E levels. The tested stressors elevated 5-HT (>2.8 µM) while lowering NE (<3.00 µM) and E (<1.02 µM) levels in the brain as opposed to exposure to non-stressed fish. In addition, reproductive markers such as vitellogenin (Vtg1) and estrogen receptor (ERα) mRNA expression in the brain were up-regulated after osmotic stress, whereas air exposure down-regulated ERα mRNA expression but up-regulated Vtg1 compared to non-stressed fish. Overall, the data indicate that acute osmotic stress and air exposure that lowered catecholamine E and NE and elevated 5-HT levels could up-regulate mRNA expression of ERα and Vtg1 genes in the zebrafish brain, thus presenting evidence for a role of neurotransmitters on reproductive signals during acute conditional stress in the brain of wild zebrafish.


Asunto(s)
Epinefrina/metabolismo , Norepinefrina/metabolismo , Presión Osmótica , Salinidad , Serotonina/metabolismo , Animales , Ambiente , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Regulación de la Expresión Génica/fisiología , Vitelogeninas/genética , Vitelogeninas/metabolismo , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...