Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 27(13)2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35807231

RESUMEN

Scoulerine is a natural compound that is known to bind to tubulin and has anti-mitotic properties demonstrated in various cancer cells. Its molecular mode of action has not been precisely known. In this work, we perform computational prediction and experimental validation of the mode of action of scoulerine. Based on the existing data in the Protein Data Bank (PDB) and using homology modeling, we create human tubulin structures corresponding to both free tubulin dimers and tubulin in a microtubule. We then perform docking of the optimized structure of scoulerine and find the highest affinity binding sites located in both the free tubulin and in a microtubule. We conclude that binding in the vicinity of the colchicine binding site and near the laulimalide binding site are the most likely locations for scoulerine interacting with tubulin. Thermophoresis assays using scoulerine and tubulin in both free and polymerized form confirm these computational predictions. We conclude that scoulerine exhibits a unique property of a dual mode of action with both microtubule stabilization and tubulin polymerization inhibition, both of which have similar affinity values.


Asunto(s)
Antineoplásicos , Alcaloides de Berberina , Antineoplásicos/farmacología , Alcaloides de Berberina/análisis , Sitios de Unión , Colchicina/química , Humanos , Microtúbulos/metabolismo , Simulación del Acoplamiento Molecular , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/farmacología
2.
Eur J Med Chem ; 215: 113282, 2021 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-33611191

RESUMEN

Colchicine shows very high antimitotic activity, therefore, it is used as a lead compound for generation of new anticancer agents. In the hope of developing novel, useful drugs with more favourable pharmacological profiles, a series of doubly modified colchicine derivatives has been designed, synthesized and characterized. These novel carbamate or thiocarbamate derivatives of 10-demethoxy-10-methylaminocolchicine have been tested for their antiproliferative activity against four human cancer cell lines. Additionally, their mode of action has been evaluated as colchicine binding site inhibitors, using molecular docking studies. Most of the tested compounds showed greater cytotoxicity (IC50 in a low nanomolar range) and were characterized by a higher selectivity index than standard chemotherapeutics such as cisplatin and doxorubicin as well as unmodified colchicine. Their pharmacological use in cancer therapy could possibly be accomplished with lower dosages and result in less acute toxicity problems than in the case of colchicine. In addition, we present a QSAR model for predicting the antiproliferative activity of doubly modified derivatives for two tumour cell lines.


Asunto(s)
Antineoplásicos/farmacología , Colchicina/análogos & derivados , Colchicina/farmacología , Tiocarbamatos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Colchicina/metabolismo , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Unión Proteica , Relación Estructura-Actividad Cuantitativa , Tiocarbamatos/síntesis química , Tiocarbamatos/metabolismo , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/síntesis química , Moduladores de Tubulina/metabolismo , Moduladores de Tubulina/farmacología
3.
Bioorg Med Chem ; 32: 116014, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33465696

RESUMEN

Colchicine is a plant alkaloid with a broad spectrum of biological and pharmacological properties. It has found application as an anti-inflammatory agent and also shows anticancer effects through its ability to destabilize microtubules by preventing tubulin dimers from polymerizing leading to mitotic death. However, adverse side effects have so far restricted its use in cancer therapy. This has led to renewed efforts to identify less toxic derivatives. In this article, we describe the synthesis of a set of novel double- and triple-modified colchicine derivatives. These derivatives were tested against primary acute lymphoblastic leukemia (ALL-5) cells and several established cancer cell lines including A549, MCF-7, LoVo and LoVo/DX. The novel derivatives were active in the low nanomolar range, with 7-deacetyl-10-thiocolchicine analogues more potent towards ALL-5 cells while 4-iodo-7-deacetyl-10-thiocolchicine analogues slightly more effective towards the LoVo cell line. Moreover, most of the synthesized compounds showed a favorable selectivity index (SI), particularly for ALL-5 and LoVo cell lines. Cell cycle analysis of the most potent molecules on ALL-5 and MCF-7 cell lines revealed contrasting effects, where M-phase arrest was observed in MCF-7 cells but not in ALL-5 cells. Molecular docking studies of all derivatives to the colchicine-binding site were performed and it was found that five of the derivatives showed strong ß-tubulin binding energies, lower than -8.70 kcal/mol, while the binding energy calculated for colchicine is -8.09 kcal/mol. The present results indicate that 7-deacetyl-10-thiocolchicine and 4-iodo-7-deacetyl-10-thiocolchicine analogues constitute promising lead compounds as chemotherapy agents against several types of cancer.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Colchicina/análogos & derivados , Simulación del Acoplamiento Molecular , Animales , Antineoplásicos Fitogénicos/síntesis química , Antineoplásicos Fitogénicos/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Colchicina/síntesis química , Colchicina/química , Colchicina/farmacología , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Ratones , Ratones Endogámicos BALB C , Estructura Molecular , Relación Estructura-Actividad
4.
Bioorg Chem ; 97: 103664, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32106039

RESUMEN

Colchicine belongs to a large group of microtubule polymerization inhibitors. Although the anti-cancer activity of colchicine and its derivatives has been established, none of them has found commercial application in cancer treatment due to side effects. Therefore, we designed and synthesized a series of six triple-modified 4-chlorothiocolchicine analogues with amide moieties and one urea derivative. These novel derivatives were tested against several different cancer cell lines (A549, MCF-7, LoVo, LoVo/DX) and primary acute lymphoblastic leukemia (ALL) cells and they showed activity in the nanomolar range. The obtained IC50 values for novel derivatives were lower than those obtained for unmodified colchicine and common anticancer drugs such as doxorubicin and cisplatin. Further studies of colchicine and selected analogues were undertaken to indicate that they induced apoptotic cell death in ALL-5 cells. We also performed in silico studies to predict binding modes of the 4-chlorothiocolchicine derivatives to different ß tubulin isotypes. The results indicate that select triple-modified 4-chlorothiocolchicine derivatives represent highly promising novel cancer chemotherapeutics.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Colchicina/análogos & derivados , Amidas/síntesis química , Amidas/química , Amidas/farmacología , Antineoplásicos/síntesis química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Colchicina/síntesis química , Colchicina/química , Colchicina/farmacología , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Halogenación , Humanos , Simulación del Acoplamiento Molecular , Neoplasias/tratamiento farmacológico , Moduladores de Tubulina/síntesis química , Moduladores de Tubulina/química , Moduladores de Tubulina/farmacología
5.
Chem Biol Drug Des ; 95(1): 182-191, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31483093

RESUMEN

Colchicine is a therapeutic agent currently used in therapies of many diseases. It also shows antimitotic effects, and its high cytotoxic activity against different cancer cell lines has been demonstrated many times. To overcome the limitations of colchicine use in anticancer therapy, we synthesized a series of novel triple-modified 4-chloro-7-carbamatethiocolchicines. All the synthesized compounds have been tested in vitro to evaluate their cytotoxicity toward A549, MCF-7, LoVo, LoVo/DX, and BALB/3T3 cell lines. Additionally, their mode of binding to ß-tubulin was evaluated in silico. The majority of triple-modified colchicine derivatives exhibited significantly higher cytotoxicity than colchicine, doxorubicin, and cisplatin against tested cancerous cell lines with much higher selectivity index values for four of them.


Asunto(s)
Antineoplásicos/síntesis química , Colchicina/análogos & derivados , Moduladores de Tubulina , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cisplatino/farmacología , Colchicina/síntesis química , Colchicina/farmacología , Doxorrubicina/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Ratones , Simulación del Acoplamiento Molecular , Conformación Proteica , Termodinámica , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/síntesis química , Moduladores de Tubulina/farmacología
6.
Bioorg Med Chem ; 27(23): 115144, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31653441

RESUMEN

Colchicine is the major alkaloid isolated from the plant Colchicum autumnale, which shows strong therapeutic effects towards different types of cancer. However, due to the toxicity of colchicine towards normal cells its application is limited. To address this issue we synthesized a series of seven triple-modified 4-bromothiocolchicine analogues with amide moieties. These novel derivatives were active in the nanomolar range against several different cancer cell lines and primary acute lymphoblastic leukemia cells, specifically compounds: 5-9 against primary ALL-5 (IC50 = 5.3-14 nM), 5, 7-9 against A549 (IC50 = 10 nM), 5, 7-9 against MCF-7 (IC50 = 11 nM), 5-9 against LoVo (IC50 = 7-12 nM), and 5, 7-9 against LoVo/DX (IC50 = 48-87 nM). These IC50 values were lower than those obtained for unmodified colchicine and common anticancer drugs such as doxorubicin and cisplatin. Further studies revealed that colchicine and selected analogues induced characteristics of apoptotic cell death but manifested their effects in different phases of the cell cycle in MCF-7 versus ALL-5 cells. Specifically, while colchicine and the studied derivatives arrested MCF-7 cells in mitosis, very little mitotically arrested ALL-5 cells were observed, suggesting effects were manifest instead in interphase. We also developed an in silico model of the mode of binding of these compounds to their primary target, ß-tubulin. We conducted a correlation analysis (linear regression) between the calculated binding energies of colchicine derivatives and their anti-proliferative activity, and determined that the obtained correlation coefficients strongly depend on the type of cells used.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Colchicina/análogos & derivados , Neoplasias/tratamiento farmacológico , Células A549 , Antineoplásicos/síntesis química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Colchicina/síntesis química , Colchicina/química , Colchicina/farmacología , Diseño de Fármacos , Halogenación , Humanos , Células MCF-7 , Mitosis/efectos de los fármacos , Simulación del Acoplamiento Molecular , Neoplasias/metabolismo , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/síntesis química , Moduladores de Tubulina/química , Moduladores de Tubulina/farmacología
7.
Cells ; 7(11)2018 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-30463236

RESUMEN

Specific modifications of colchicine followed by synthesis of its analogues have been tested in vitro with the objective of lowering colchicine toxicity. Our previous studies have clearly shown the anticancer potential of double-modified colchicine derivatives in C-7 and C-10 positions. Here, a series of novel triple-modified colchicine derivatives is reported. They have been obtained following a four-step strategy. In vitro cytotoxicity of these compounds has been evaluated against four human tumor cell lines (A549, MCF-7, LoVo, and LoVo/DX). Additionally, the mode of binding of the synthesized compounds was evaluated in silico using molecular docking to a 3D structure of ß-tubulin based on crystallographic data from the Protein Data Bank and homology methodology. Binding free energy estimates, binding poses, and MlogP values of the compounds were obtained. All triple-modified colchicine derivatives were shown to be active at nanomolar concentrations against three of the investigated cancer cell lines (A549, MCF-7, LoVo). Four of them also showed higher potency against tumor cells over normal cells as confirmed by their high selectivity index values. A vast majority of the synthesized derivatives exhibited several times higher cytotoxicity than colchicine, doxorubicin, and cisplatin.

8.
Cells ; 7(11)2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30388878

RESUMEN

Microtubules are tubulin polymer structures, which are indispensable for cell growth and division. Its constituent protein ß-tubulin has been a common drug target for various diseases including cancer. Colchicine has been used to treat gout, but it has also been an investigational anticancer agent with a known antimitotic effect on cells. However, the use of colchicine as well as many of its derivatives in long-term treatment is hampered by their high toxicity. To create more potent anticancer agents, three novel double-modified colchicine derivatives have been obtained by structural modifications in C-4 and C-10 positions. The binding affinities of these derivatives of colchicine with respect to eight different isotypes of human ß-tubulin have been calculated using docking methods. In vitro cytotoxicity has been evaluated against four human tumor cell lines (A549, MCF-7, LoVo and LoVo/DX). Computer simulations predicted the binding modes of these compounds and hence the key residues involved in the interactions between tubulin and the colchicine derivatives. Two of the obtained derivatives, 4-bromothiocolchicine and 4-iodothiocolchicine, were shown to be active against three of the investigated cancer cell lines (A549, MCF-7, LoVo) with potency at nanomolar concentrations and a higher relative affinity to tumor cells over normal cells.

9.
Bioorg Chem ; 81: 553-566, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30248507

RESUMEN

A number of naturally occurring compounds such as paclitaxel, vinblastine, combretastatin, and colchicine exert their therapeutic effect by changing the dynamics of tubulin and its polymer form, microtubules. The identification of tubulin as a potential target for anticancer drugs has led to extensive research followed by clinical development of numerous compounds from several families. In this paper we report on the design, synthesis and in vitro evaluation of a group of thiocolchicine derivatives, modified at ring-B, labelled here compounds 4-14. These compounds have been obtained in a simple reaction of 7-deacetyl-10-thiocolchicine 3 with eleven different alcohols in the presence of triphosgene. These novel agents have been checked for anti-proliferative activity against four human cancer cell lines and their mode of action has been confirmed as colchicine binding site inhibition (CBSI) using molecular docking. Molecular simulations provided rational tubulin binding models for the tested compounds. On the basis of in vitro tests, derivatives 4-8 and 14 demonstrated the highest potency against MCF-7, LoVo and A549 tumor cell lines (IC50 values = 0.009-0.014 µM). They were more potent and characterized by a higher selectivity index than several standard chemotherapeutics including cisplatin and doxorubicin as well as unmodified colchicine. Further, studies revealed that colchicine and its several derivatives arrested MCF-7 cells in mitosis, while its selected derivatives caused microtubule depolymerization.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Colchicina/análogos & derivados , Uretano/análogos & derivados , Uretano/farmacología , Antineoplásicos/síntesis química , Línea Celular Tumoral , Colchicina/síntesis química , Colchicina/química , Colchicina/farmacología , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Mitosis/efectos de los fármacos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/síntesis química , Moduladores de Tubulina/química , Moduladores de Tubulina/farmacología , Uretano/síntesis química
10.
Bioorg Chem ; 64: 103-12, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26794327

RESUMEN

In order to create more potent anticancer agents, a series of five structurally different derivatives of Colchicine have been synthesised. These compounds were characterised spectroscopically and structurally and their antiproliferative activity against four human tumour cell lines (HL-60, HL-60/vinc, LoVo, LoVo/DX) was evaluated. Additionally the activity of the studied compounds was calculated using computational methods involving molecular docking of the Colchicine derivatives to ß-tubulin. The experimental and computational results are in very good agreement indicating that the antimitotic activity of Colchicine derivatives can be readily predicted using computational modeling methods.


Asunto(s)
Antineoplásicos/farmacología , Colchicina/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Sitios de Unión , Línea Celular Tumoral , Colchicina/síntesis química , Colchicina/química , Humanos , Simulación del Acoplamiento Molecular , Tubulina (Proteína)/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...