Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Magn Reson Imaging ; 2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37864370

RESUMEN

BACKGROUND: Deep-learning is widely used for lesion classification. However, in the clinic patient data often has missing images. PURPOSE: To evaluate the use of generated, duplicate and empty(black) images for replacing missing MRI data in AI brain tumor classification tasks. STUDY TYPE: Retrospective. POPULATION: 224 patients (local-dataset; low-grade-glioma (LGG) = 37, high-grade-glioma (HGG) = 187) and 335 patients (public-dataset (BraTS); LGG = 76, HGG = 259). The local-dataset was divided into training (64), validation (16), and internal-test-data (20), while the public-dataset was an independent test-set. FIELD STRENGTH/SEQUENCE: T1WI, T1WI+C, T2WI, and FLAIR images (1.5T/3.0T-MR), obtained from different suppliers. ASSESSMENT: Three image-to-image translation generative-adversarial-network (Pix2Pix-GAN) models were trained on the local-dataset, to generate T1WI, T2WI, and FLAIR images. The rating-and-preference-judgment assessment was performed by three human-readers (radiologist (MD) and two MRI-technicians). Resnet152 was used for classification, and inference was performed on both datasets, with baseline input, and with missing data replaced by 1) generated images; 2) duplication of existing images; and 3) black images. STATISTICAL TESTS: The similarity between the generated and the original images was evaluated using the peak-signal-to-noise-ratio (PSNR) and the structural-similarity-index-measure (SSIM). Classification results were evaluated using accuracy, F1-score and the Kolmogorov-Smirnov test and distance. RESULTS: For baseline-state, the classification model reached to accuracy = 0.93,0.82 on the local and public-datasets. For the missing-data methods, high similarity was obtained between the generated and the original images with mean PSNR = 35.65,32.94 and SSIM = 0.87,0.91 on the local and public-datasets; 39% of the generated-images were labeled as real images by the human-readers. The classification model using generated-images to replace missing images produced the highest results with mean accuracy = 0.91,0.82 compared to 0.85,0.79 for duplicated and 0.77,0.68 for use of black images; DATA CONCLUSION: The feasibility for inference classification model on an MRI dataset with missing images using the Pix2pix-GAN generated images, was shown. The stability and generalization ability of the model was demonstrated by producing consistent results on two independent datasets. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 5.

2.
Technol Cancer Res Treat ; 21: 15330338221131387, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36320179

RESUMEN

Purpose: White-matter tract segmentation in patients with brain pathology can guide surgical planning and can be used for tissue integrity assessment. Recently, TractSeg was proposed for automatic tract segmentation in healthy subjects. The aim of this study was to assess the use of TractSeg for corticospinal-tract (CST) segmentation in a large cohort of patients with brain pathology and to evaluate its consistency in repeated measurements. Methods: A total of 649 diffusion-tensor-imaging scans were included, of them: 625 patients and 24 scans from 12 healthy controls (scanned twice for consistency assessment). Manual CST labeling was performed in all cases, and by 2 raters for the healthy subjects. Segmentation results were evaluated based on the Dice score. In order to evaluate consistency in repeated measurements, volume, Fractional Anisotropy (FA), and Mean Diffusivity (MD) values were extracted and correlated for the manual versus automatic methods. Results: For the automatic CST segmentation Dice scores of 0.63 and 0.64 for the training and testing datasets were obtained. Higher consistency between measurements was detected for the automatic segmentation, with between measurements correlations of volume = 0.92/0.65, MD = 0.94/0.75 for the automatic versus manual segmentation. Conclusions: The TractSeg method enables automatic CST segmentation in patients with brain pathology. Superior measurements consistency was detected for the automatic in comparison to manual fiber segmentation, which indicates an advantage when using this method for clinical and longitudinal studies.


Asunto(s)
Imagen de Difusión Tensora , Tractos Piramidales , Sustancia Blanca , Humanos , Imagen de Difusión Tensora/métodos , Tractos Piramidales/diagnóstico por imagen , Tractos Piramidales/patología , Tractos Piramidales/cirugía , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Sustancia Blanca/cirugía , Estudios de Casos y Controles , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...