Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(6)2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35328660

RESUMEN

In this work, sulfonated polyetheretherketone (S-PEEK)-based coatings, nanocrystalline ZnS and hydroxyapatite (n-HA) particles were developed on Zr-2.5Nb zirconium alloy substrates by electrophoretic deposition (EPD) combined with subsequent heat treatment. The properties of suspensions and deposition kinetics were studied. Cationic chitosan polyelectrolyte ensured the stabilization of the suspension and allowed for the co-deposition of all coating components on the cathode. The heating of the coated samples at a temperature of 450 °C and slow cooling resulted in sulfonation of the PEEK and the formation of dense coatings. The coatings were characterized by high roughness, hardness, modulus of elasticity and adhesion strength. The coatings revealed mild hydrophilicity, improved the electrochemical corrosion resistance of the alloy and induced the formation of hydroxyapatite with a cauliflower-like morphology on its surface during the Kokubo test. This work explored the great development potential of advanced sulfonated PEEK-based coatings, incorporating antibacterial and bioactive components by EPD combined with heat treatment to stimulate the surface properties of zirconium alloy for prospective dental and orthopedic applications. The antibacterial and osteoconductive properties of the obtained coatings should be further investigated.


Asunto(s)
Aleaciones , Durapatita , Aleaciones/química , Antibacterianos , Benzofenonas , Materiales Biocompatibles Revestidos/química , Durapatita/química , Cetonas/química , Ensayo de Materiales , Polietilenglicoles/química , Polímeros , Estudios Prospectivos , Sulfuros , Propiedades de Superficie , Compuestos de Zinc , Circonio/química
2.
Materials (Basel) ; 14(16)2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34443185

RESUMEN

The aim of this work was to determine the influence of the tungsten addition to TiB2 coatings on their microstructure and brittle cracking resistance. Four coatings of different compositions (0, 7, 15, and 20 at.% of W) were deposited by magnetron sputtering from TiB2 and W targets. The coatings were investigated by the following methods: X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). All coatings had a homogeneous columnar structure with decreasing column width as the tungsten content increased. XRD and XPS analysis showed the presence of TiB2 and nonstoichiometric TiBx phases with an excess or deficiency of boron depending on composition. The crystalline size decreased from 27 nm to 10 nm with increasing W content. The brittle cracking resistance improved with increasing content of TiBx phase with deficiency of B and decreasing crystalline size.

3.
Materials (Basel) ; 14(8)2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33924272

RESUMEN

In the present work, an oxygen hardening of near-ß phase Ti-13Nb-13Zr alloy in plasma glow discharge at 700-1000 °C was studied. The influence of the surface treatment on the alloy microstructure, tribological and micromechanical properties, and corrosion resistance is presented. A strong influence of the treatment on the hardened zone thickness, refinement of the α' laths and grain size of the bulk alloy were found. The outer hardened zone contained mainly an oxygen-rich Ti α' (O) solid solution. The microhardness and elastic modulus of the hardened zone decreased with increasing hardening temperature. The hardened zone thickness, size of the α' laths, and grain size of the bulk alloy increased with increasing treatment temperature. The wear resistance of the alloy oxygen-hardened at 1000 °C was about two hundred times, and at 700 °C, even five hundred times greater than that of the base alloy. Oxygen hardening also slightly improved the corrosion resistance. Tribocorrosion tests revealed that the alloy hardened at 700 °C was wear-resistant in a corrosive environment, and when the friction process was completed, the passive film was quickly restored. The results show that glow discharge plasma oxidation is a simple and effective method to enhance the micromechanical and tribological performance of the Ti-13Nb-13Zr alloy.

4.
Materials (Basel) ; 14(2)2021 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-33435364

RESUMEN

Zein coatings were obtained by electrophoretic deposition (EPD) on commercially pure titanium substrates in an as-received state and after various chemical treatments. The properties of the zein solution, zeta potential and conductivity, at varying pH values were investigated. It was found that the zein content and the ratio of water to ethanol of the solution used for EPD, as well as the process voltage value and time, significantly influence the morphology of coatings. The deposits obtained from the solution containing 150 g/L and 200 g/L of zein and 10 vol % of water and 90 vol % of ethanol, about 4-5 µm thick, were dense and homogeneous. The effect of chemical treatment of the Ti substrate surface prior to EPD on coating adhesion to the substrate was determined. The coatings showed the highest adhesion to the as-received and anodized substrates due to the presence of a thick TiO2 layer on their surfaces and the presence of specific surface features. Coated titanium substrates showed slightly lower electrochemical corrosion resistance than the uncoated one in Ringer's solution. The coatings showed a well-developed surface topography compared to the as-received substrate, and they demonstrated hydrophilic nature. The present results provide new insights for the further development of zein-based composite coatings for biomedical engineering applications.

5.
Materials (Basel) ; 13(15)2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32707921

RESUMEN

The present study explores the possibilities of fabricating a graphite/polyetheretherketone (PEEK) composite coating on a Ti-6Al-4V titanium alloy through duplex treatment consisting of electrophoretic deposition (EPD) and heat treatment. It has been found that the electrophoretic co-deposition of graphite and PEEK microparticles can be performed from environmentally-friendly pure ethanolic suspensions. Zeta potential measurements and a study of the interaction between both particle types with the use of transmission electron microscopy allowed potential mechanisms of particle co-deposition to be indicated. Microstructure characterization was performed on macro-, micro- and nanoscale using visible light microscopy, X-ray diffractometry and electron microscopy. This allowed the coating homogeneity and distribution of graphite particles in the polymer matrix to be described. Graphite particles in the form of graphene nanosheet packages were relatively evenly distributed in the coating matrix and oriented parallel to the coating surface. The heat-treated coatings showed high scratch resistance and no adhesive type destruction was observed, but they were highly susceptible to deformation. The corrosion measurements were performed with use of electrochemical techniques like open circuit potential and linear sweep voltamperometry. The coated alloy indicated better electrochemical corrosion resistance compared with the uncoated alloy. This work showed the high versatility of the electrophoretic co-deposition of graphite and PEEK particles, which combined with post-EPD heat treatment allows composite coatings to be fabricated with controlled distribution of graphite particles.

6.
Mater Sci Eng C Mater Biol Appl ; 63: 52-61, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27040195

RESUMEN

Polyetheretherketone (PEEK) coatings of 70-90µm thick were electrophoretically deposited from a suspension of PEEK powder in ethanol on near-ß Ti-13Nb-13Zr titanium alloy. In order to produce good quality coatings, the composition of the suspension (pH) and optimized deposition parameters (applied voltage and time) were experimentally selected. The as-deposited coatings exhibited the uniform distribution of PEEK powders on the substrate. The subsequent annealing at a temperature above the PEEK melting point enabled homogeneous, semi-crystalline coatings with spherulitic morphology to be produced. A micro-scratch test showed that the coatings exhibited very good adhesion to the titanium alloy substrate. Coating delamination was not observed even up to a maximal load of 30N. The PEEK coatings significantly improved the tribological properties of the Ti-13Nb-13Zr alloy. The coefficient of friction was reduced from 0.55 for an uncoated alloy to 0.40 and 0.12 for a coated alloy in a dry sliding and sliding in Ringer's solution, respectively. The PEEK coatings exhibited excellent wear resistance in both contact conditions. Their wear rate was more than 200 times smaller compared with the wear rate of the uncoated Ti-13Nb-13Zr alloy. The obtained results indicate that electrophoretically deposited PEEK coatings on the near-ß titanium alloy exhibit very useful properties for their prospective tribological applications in medicine.


Asunto(s)
Materiales Biocompatibles/química , Cetonas/química , Polietilenglicoles/química , Titanio/química , Benzofenonas , Corrosión , Espectroscopía Dieléctrica , Microscopía de Fuerza Atómica , Microscopía Electrónica de Rastreo , Polímeros , Propiedades de Superficie , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...