RESUMEN
BACKGROUND: Diabetic neuropathy (DN) is recognized as a significant complication arising from diabetes mellitus (DM). Pathogenesis of DN is accelerated by endoplasmic reticulum (ER) stress, which inhibits autophagy and contributes to disease progression. Autophagy is a highly conserved mechanism crucial in mitigating cell death induced by ER stress. Chrysin, a naturally occurring flavonoid, can be found abundantly in honey, propolis, and various plant extracts. Despite possessing advantageous attributes such as being an antioxidant, anti-allergic, anti-inflammatory, anti-fibrotic, and anticancer agent, chrysin exhibits limited bioavailability. The current study aimed to produce a more bioavailable form of chrysin and discover how administering chrysin could alter the neuropathy induced by Alloxan in male rats. METHODS: Chrysin was formulated using PEGylated liposomes to boost its bioavailability and formulation. Chrysin PEGylated liposomes (Chr-PLs) were characterized for particle size diameter, zeta potential, polydispersity index, transmission electron microscopy, and in vitro drug release. Rats were divided into four groups: control, Alloxan, metformin, and Chr-PLs. In order to determine Chr- PLs' antidiabetic activity and, by extension, its capacity to ameliorate DN, several experiments were carried out. These included measuring acetylcholinesterase, fasting blood glucose, insulin, genes dependent on autophagy or stress in the endoplasmic reticulum, and histopathological analysis. RESULTS: According to the results, the prepared Chr-PLs exhibited an average particle size of approximately 134 nm. They displayed even distribution of particle sizes. The maximum entrapment efficiency of 90.48 ± 7.75% was achieved. Chr-PLs effectively decreased blood glucose levels by 67.7% and elevated serum acetylcholinesterase levels by 40% compared to diabetic rats. Additionally, Chr-PLs suppressed the expression of ER stress-related genes (ATF-6, CHOP, XBP-1, BiP, JNK, PI3K, Akt, and mTOR by 33%, 39.5%, 32.2%, 44.4%, 40.4%, 39.2%, 39%, and 35.9%, respectively). They also upregulated the miR-301a-5p expression levels by 513% and downregulated miR-301a-5p expression levels by 65%. They also boosted the expression of autophagic markers (AMPK, ULK1, Beclin 1, and LC3-II by 90.3%, 181%, 109%, and 78%, respectively) in the sciatic nerve. The histopathological analysis also showed that Chr-PLs inhibited sciatic nerve degeneration. CONCLUSION: The findings suggest that Chr-PLs may be helpful in the protection against DN via regulation of ER stress and autophagy.
Asunto(s)
Autofagia , Diabetes Mellitus Experimental , Neuropatías Diabéticas , Estrés del Retículo Endoplásmico , Flavonoides , Liposomas , Animales , Flavonoides/farmacología , Flavonoides/administración & dosificación , Autofagia/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Masculino , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/complicaciones , Ratas , Neuropatías Diabéticas/tratamiento farmacológico , Neuropatías Diabéticas/prevención & control , Polietilenglicoles/farmacología , Aloxano , Ratas Wistar , Ratas Sprague-DawleyRESUMEN
Abstract Algae can tolerate a broad range of growing conditions but extreme conditions may lead to the generation of highly dangerous reactive oxygen species (ROS), which may cause the deterioration of cell metabolism and damage cellular components. The antioxidants produced by algae alleviate the harmful effects of ROS. While the enhancement of antioxidant production in blue green algae under stress has been reported, the antioxidant response to changes in pH levels requires further investigation. This study presents the effect of pH changes on the antioxidant activity and productivity of the blue green alga Spirulina (Arthrospira) platensis. The algal dry weight (DW) was greatly enhanced at pH 9.0. The highest content of chlorophyll a and carotenoids (10.6 and 2.4 mg/g DW, respectively) was recorded at pH 8.5. The highest phenolic content (12.1 mg gallic acid equivalent (GAE)/g DW) was recorded at pH 9.5. The maximum production of total phycobiliprotein (159 mg/g DW) was obtained at pH 9.0. The antioxidant activities of radical scavenging activity, reducing power and chelating activity were highest at pH 9.0 with an increase of 567, 250 and 206% compared to the positive control, respectively. Variation in the activity of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) was also reported. While the high alkaline pH may favor the overproduction of antioxidants, normal cell metabolism and membrane function is unaffected, as shown by growth and chlorophyll content, which suggests that these conditions are suitable for further studies on the harvest of antioxidants from S. platensis.
Asunto(s)
Spirulina/metabolismo , Antioxidantes/metabolismo , Oxidación-Reducción , Fenoles/metabolismo , Fenoles/química , Clorofila/metabolismo , Spirulina/crecimiento & desarrollo , Spirulina/química , Ficobiliproteínas/metabolismo , Ficobiliproteínas/química , Concentración de Iones de Hidrógeno , Antioxidantes/químicaRESUMEN
Algae can tolerate a broad range of growing conditions but extreme conditions may lead to the generation of highly dangerous reactive oxygen species (ROS), which may cause the deterioration of cell metabolism and damage cellular components. The antioxidants produced by algae alleviate the harmful effects of ROS. While the enhancement of antioxidant production in blue green algae under stress has been reported, the antioxidant response to changes in pH levels requires further investigation. This study presents the effect of pH changes on the antioxidant activity and productivity of the blue green alga Spirulina (Arthrospira) platensis. The algal dry weight (DW) was greatly enhanced at pH 9.0. The highest content of chlorophyll a and carotenoids (10.6 and 2.4 mg/g DW, respectively) was recorded at pH 8.5. The highest phenolic content (12.1 mg gallic acid equivalent (GAE)/g DW) was recorded at pH 9.5. The maximum production of total phycobiliprotein (159 mg/g DW) was obtained at pH 9.0. The antioxidant activities of radical scavenging activity, reducing power and chelating activity were highest at pH 9.0 with an increase of 567, 250 and 206% compared to the positive control, respectively. Variation in the activity of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) was also reported. While the high alkaline pH may favor the overproduction of antioxidants, normal cell metabolism and membrane function is unaffected, as shown by growth and chlorophyll content, which suggests that these conditions are suitable for further studies on the harvest of antioxidants from S. platensis.(AU)
Asunto(s)
Spirulina/química , Spirulina/metabolismo , Antioxidantes/síntesis química , CarotenoidesRESUMEN
Algae can tolerate a broad range of growing conditions but extreme conditions may lead to the generation of highly dangerous reactive oxygen species (ROS), which may cause the deterioration of cell metabolism and damage cellular components. The antioxidants produced by algae alleviate the harmful effects of ROS. While the enhancement of antioxidant production in blue green algae under stress has been reported, the antioxidant response to changes in pH levels requires further investigation. This study presents the effect of pH changes on the antioxidant activity and productivity of the blue green alga Spirulina (Arthrospira) platensis. The algal dry weight (DW) was greatly enhanced at pH 9.0. The highest content of chlorophyll a and carotenoids (10.6 and 2.4mg/g DW, respectively) was recorded at pH 8.5. The highest phenolic content (12.1mg gallic acid equivalent (GAE)/g DW) was recorded at pH 9.5. The maximum production of total phycobiliprotein (159mg/g DW) was obtained at pH 9.0. The antioxidant activities of radical scavenging activity, reducing power and chelating activity were highest at pH 9.0 with an increase of 567, 250 and 206% compared to the positive control, respectively. Variation in the activity of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) was also reported. While the high alkaline pH may favor the overproduction of antioxidants, normal cell metabolism and membrane function is unaffected, as shown by growth and chlorophyll content, which suggests that these conditions are suitable for further studies on the harvest of antioxidants from S. platensis.
Asunto(s)
Antioxidantes/metabolismo , Spirulina/metabolismo , Antioxidantes/química , Clorofila/metabolismo , Clorofila A , Concentración de Iones de Hidrógeno , Oxidación-Reducción , Fenoles/química , Fenoles/metabolismo , Ficobiliproteínas/química , Ficobiliproteínas/metabolismo , Spirulina/química , Spirulina/crecimiento & desarrolloRESUMEN
OBJECTIVE: The aim of this work is to study the resistive index (RI) of prostatic blood flow by transrectal power Doppler sonography in benign prostatic hyperplasia (BPH) to determine its correlation with other parameters of BPH. MATERIALS AND METHODS: Eighty-two male patients aged 52-86 years with lower urinary tract symptoms (LUTS) due to BPH were included in the study. Patients with prostate cancer, neurogenic bladder, or with other pathology (e.g. prostatitis, bladder stone) were excluded from the study. All patients were evaluated by full history including Internatinoal Prostate Symptoms Score (IPSS), general and local examination (DRE), neurologic examination, uroflowmetry, laboratory investigations including urine analysis, routine laboratory tests and serum prostate specific antigen (PSA). Transrectal ultrasonography was used to calculate the total prostatic volume. Transrectal Power Doppler Ultrasound (PUD) was used to identify the capsular and urethral arteries of the prostate and to measures the RI value. RESULTS: The mean prostate volume was 75.1 ± 44.7 g. The mean RI of the right and left capsular arteries were 0.76 ± 0.06 and 0.76 ± 0.07, respectively. The mean RI of the urethral arteries was 0.76 ± 0.08. There was a high significative correlation between the increase of the RI of the right and left capsular and urethral arteries and the degree of obstruction (P value < 0.001), severity of symptoms (P value < 0.001) and also the prostatic volume (P value < 0.001). CONCLUSION: Resistive index of the prostatic blood flow can be applied as an easy and non-invasive tool to evaluate the lower urinary tract obstruction due to BPH.
Asunto(s)
Próstata/irrigación sanguínea , Hiperplasia Prostática/fisiopatología , Uretra/irrigación sanguínea , Resistencia Vascular , Anciano , Anciano de 80 o más Años , Humanos , Masculino , Persona de Mediana Edad , Próstata/diagnóstico por imagen , Hiperplasia Prostática/diagnóstico por imagen , Flujo Sanguíneo Regional/fisiología , Ultrasonografía Doppler en Color/métodos , Uretra/diagnóstico por imagen , Obstrucción del Cuello de la Vejiga Urinaria/etiologíaRESUMEN
OBJECTIVE: The aim of this work is to study the resistive index (RI) of prostatic blood flow by transrectal power Doppler sonography in benign prostatic hyperplasia (BPH) to determine its correlation with other parameters of BPH. MATERIALS AND METHODS: Eighty-two male patients aged 52-86 years with lower urinary tract symptoms (LUTS) due to BPH were included in the study. Patients with prostate cancer, neurogenic bladder, or with other pathology (e.g. prostatitis, bladder stone) were excluded from the study. All patients were evaluated by full history including Internatinoal Prostate Symptoms Score (IPSS), general and local examination (DRE), neurologic examination, uroflowmetry, laboratory investigations including urine analysis, routine laboratory tests and serum prostate specific antigen (PSA). Transrectal ultrasonography was used to calculate the total prostatic volume. Transrectal Power Doppler Ultrasound (PUD) was used to identify the capsular and urethral arteries of the prostate and to measures the RI value. RESULTS: The mean prostate volume was 75.1 ± 44.7 g. The mean RI of the right and left capsular arteries were 0.76 ± 0.06 and 0.76 ± 0.07, respectively. The mean RI of the urethral arteries was 0.76 ± 0.08. There was a high significative correlation between the increase of the RI of the right and left capsular and urethral arteries and the degree of obstruction (P value < 0.001), severity of symptoms (P value < 0.001) and also the prostatic volume (P value < 0.001). CONCLUSION: Resistive index of the prostatic blood flow can be applied as an easy and non-invasive tool to evaluate the lower urinary tract obstruction due to BPH.