Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anat Rec (Hoboken) ; 305(5): 1287-1293, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34463033

RESUMEN

The family Falconidae has contrasting behaviors on its flight within the subfamilies. Falcons are primarily aerial predators requiring accuracy, high speed, and controlled movements during flight. Caracaras are generalists that seek food while walking and their flight is characterized as slow and erratic. We aimed to explore the muscle mass of the primary wing muscles in several species of Falconinae and to identify possible differences related to the role that these muscles perform during flight. We studied 34 wing muscles in 11 specimens of five species of falcons. The percentage of each muscle with respect to body mass was calculated as well as the total wing muscle mass. The search for differences between muscles of falcons and caracaras was analyzed using Bayesian statistical inference. Published data from Polyborinae were used for comparison. Five muscles were significantly different between both subfamilies mm. latissimus dorsi pars caudalis, biceps brachii, extensor carpi radialis, flexor digitorum superficialis, and extensor digitorum communis. The first two muscles were larger in Polyborinae, which could be useful to achieve more strength and stabilization. In falcons the last three muscles listed were larger, which might be associated with their fast and acrobatic flight. Variations in certain muscles generate, in turn, differences in function, which is reflected in their type of flight and its use. These findings reinforce the modular character of the locomotor system of birds whereby the regions involved in locomotion can have morphological peculiarities according to their lifestyle.


Asunto(s)
Falconiformes , Animales , Teorema de Bayes , Aves/anatomía & histología , Falconiformes/anatomía & histología , Vuelo Animal/fisiología , Músculo Esquelético/anatomía & histología , Alas de Animales/anatomía & histología
2.
J Morphol ; 281(4-5): 450-464, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32053241

RESUMEN

Barn Owls (Tytonidae) are nocturnal raptors with the largest geographical distribution among Strigiformes. Several osteological, morphometrical, and biomechanical studies of this species were performed by previous authors. Nevertheless, the myology of forelimb and tail of the Barn Owls is virtually unknown. This study is the first detailed myological study performed on the wing and tail of the American Barn Owl (Tyto furcata). A total of 11 specimens were dissected and their morphology and muscle masses were described. Although T. furcata has the wing and tail myological pattern present in other species of Strigiformes, some peculiarities were observed including a difference in the attachment of m. pectoralis propatagialis due to the lack of the os prominence, and the presence of an osseous arch in the radius that seems to widen the anchorage area of the mm. pronator profundus, extensor longus alulae, and extensor longus digiti majoris. Furthermore, the m. biceps brachii has an unusual extra belly that flexes the forearm. The interosseous muscles have a small size and lacks ossified tendons. This feature may be indicative of a lower specialization in the elevation and flexion of the digiti majoris. Forelimb and tail muscle mass account for 10.66 and 0.24% of the total body mass, respectively. Forelimb muscle mass value is similar to the nocturnal (Strigiformes) and diurnal (Falconidae and Accipitridae) raptors, while the tail value is lower than in the diurnal raptors (Falconidae and Accipitridae). The myological differences with other birds of prey are here interpreted in association with their "parachuting" hunting style. This work complements our knowledge of the axial musculature of the American Barn owls, and provides important information for future studies related to functional morphology and ecomorphology.


Asunto(s)
Músculo Esquelético/anatomía & histología , Estrigiformes/anatomía & histología , Cola (estructura animal)/anatomía & histología , Alas de Animales/anatomía & histología , Animales , Tamaño de los Órganos , Estrigiformes/fisiología
3.
J Morphol ; 274(10): 1191-201, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23801144

RESUMEN

We describe the hindlimb myology of Milvago chimango. This member of the Falconidae: Polyborinae is a generalist and opportunist that can jump and run down prey on the ground, unlike Falconinae that hunt birds in flight and kill them by striking with its talons. Due to differences in the locomotion habits between the subfamilies, we hypothesized differences in their hindlimb myology. Gross dissections showed that the myology of M. chimango is concordant with that described of other falconids, except for the following differences: the m. flexor cruris medialis has one belly with a longitudinal division; the m. iliotibialis lateralis does not have a connection with the m. iliofibularis; the m. fibularis longus is strongly aponeurotic; the m. tibialis cranialis lacks an accessory tendons and the m. flexor hallucis longus has one place of origin, instead of two. The presence of the m. flexor cruris lateralis can be distinguished as it has been described absent for the Falconidae. We associated its presence with the predominant terrestrial habit of the M. chimango. Each muscle dissected was weighed and the relationship between flexors and extensors at each joint was assessed. The extensor muscles predominated in all joints in M. chimango. Among the flexors, the m. flexor hallucis longus was the heaviest, which could be related to the importance of the use of its talons to obtain food.


Asunto(s)
Falconiformes/anatomía & histología , Miembro Posterior/anatomía & histología , Músculo Esquelético/anatomía & histología , Animales , Locomoción/fisiología , Músculos/fisiología , Tendones/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...