Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Neurosci ; 27(3): 561-572, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38243089

RESUMEN

Episodic memories are encoded by experience-activated neuronal ensembles that remain necessary and sufficient for recall. However, the temporal evolution of memory engrams after initial encoding is unclear. In this study, we employed computational and experimental approaches to examine how the neural composition and selectivity of engrams change with memory consolidation. Our spiking neural network model yielded testable predictions: memories transition from unselective to selective as neurons drop out of and drop into engrams; inhibitory activity during recall is essential for memory selectivity; and inhibitory synaptic plasticity during memory consolidation is critical for engrams to become selective. Using activity-dependent labeling, longitudinal calcium imaging and a combination of optogenetic and chemogenetic manipulations in mouse dentate gyrus, we conducted contextual fear conditioning experiments that supported our model's predictions. Our results reveal that memory engrams are dynamic and that changes in engram composition mediated by inhibitory plasticity are crucial for the emergence of memory selectivity.


Asunto(s)
Consolidación de la Memoria , Memoria Episódica , Ratones , Animales , Consolidación de la Memoria/fisiología , Recuerdo Mental/fisiología , Neuronas/fisiología , Miedo/fisiología
2.
bioRxiv ; 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37873089

RESUMEN

Astrocyte specification during development is influenced by both intrinsic and extrinsic factors, but the precise contribution of each remains poorly understood. Here we show that septal astrocytes from Nkx2.1 and Zic4 expressing progenitor zones are allocated into non-overlapping domains of the medial (MS) and lateral septal nuclei (LS) respectively. Astrocytes in these areas exhibit distinctive molecular and morphological features tailored to the unique cellular and synaptic circuit environment of each nucleus. Using single-nucleus (sn) RNA sequencing, we trace the developmental trajectories of cells in the septum and find that neurons and astrocytes undergo region and developmental stage-specific local cell-cell interactions. We show that expression of the classic morphogens Sonic hedgehog (Shh) and Fibroblast growth factors (Fgfs) by MS and LS neurons respectively, functions to promote the molecular specification of local astrocytes in each region. Finally, using heterotopic cell transplantation, we show that both morphological and molecular specifications of septal astrocytes are highly dependent on the local microenvironment, regardless of developmental origins. Our data highlights the complex interplay between intrinsic and extrinsic factors shaping astrocyte identities and illustrates the importance of the local environment in determining astrocyte functional specialization.

3.
Proc Natl Acad Sci U S A ; 119(20): e2118712119, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35537049

RESUMEN

Alterations in the structure and functional connectivity of anterior thalamic nuclei (ATN) have been linked to reduced cognition during aging. However, ATN circuits that contribute to higher cognitive functions remain understudied. We found that the anteroventral (AV) subdivision of ATN is necessary specifically during the maintenance phase of a spatial working memory task. This function engages the AV→parasubiculum (PaS)→entorhinal cortex (EC) circuit. Aged mice showed a deficit in spatial working memory, which was associated with a decrease in the excitability of AV neurons. Activation of AV neurons or the AV→PaS circuit in aged mice was sufficient to rescue their working memory performance. Furthermore, rescued aged mice showed improved behavior-induced neuronal activity in prefrontal cortex (PFC), a critical site for working memory processes. Although the direct activation of PFC neurons in aged mice also rescued their working memory performance, we found that these animals exhibited increased levels of anxiety, which was not the case for AV→PaS circuit manipulations in aged mice. These results suggest that targeting AV thalamus in aging may not only be beneficial for cognitive functions but that this approach may have fewer unintended effects compared to direct PFC manipulations.


Asunto(s)
Núcleos Talámicos Anteriores , Animales , Núcleos Talámicos Anteriores/fisiología , Cognición , Trastornos de la Memoria , Memoria a Corto Plazo/fisiología , Ratones , Vías Nerviosas/fisiología , Neuronas
4.
Nat Commun ; 13(1): 1799, 2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35379803

RESUMEN

Neuronal ensembles that hold specific memory (memory engrams) have been identified in the hippocampus, amygdala, or cortex. However, it has been hypothesized that engrams of a specific memory are distributed among multiple brain regions that are functionally connected, referred to as a unified engram complex. Here, we report a partial map of the engram complex for contextual fear conditioning memory by characterizing encoding activated neuronal ensembles in 247 regions using tissue phenotyping in mice. The mapping was aided by an engram index, which identified 117 cFos+ brain regions holding engrams with high probability, and brain-wide reactivation of these neuronal ensembles by recall. Optogenetic manipulation experiments revealed engram ensembles, many of which were functionally connected to hippocampal or amygdala engrams. Simultaneous chemogenetic reactivation of multiple engram ensembles conferred a greater level of memory recall than reactivation of a single engram ensemble, reflecting the natural memory recall process. Overall, our study supports the unified engram complex hypothesis for memory storage.


Asunto(s)
Mapeo Encefálico , Memoria , Animales , Encéfalo , Miedo/fisiología , Hipocampo/fisiología , Memoria/fisiología , Ratones
5.
Cell Rep ; 38(8): 110416, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35196485

RESUMEN

Neuron-glia interactions play a critical role in the regulation of synapse formation and circuit assembly. Here we demonstrate that canonical Sonic hedgehog (Shh) pathway signaling in cortical astrocytes acts to coordinate layer-specific synaptic connectivity. We show that the Shh receptor Ptch1 is expressed by cortical astrocytes during development and that Shh signaling is necessary and sufficient to promote the expression of genes involved in regulating synaptic development and layer-enriched astrocyte molecular identity. Loss of Shh in layer V neurons reduces astrocyte complexity and coverage by astrocytic processes in tripartite synapses; conversely, cell-autonomous activation of Shh signaling in astrocytes promotes cortical excitatory synapse formation. Furthermore, Shh-dependent genes Lrig1 and Sparc distinctively contribute to astrocyte morphology and synapse formation. Together, these results suggest that Shh secreted from deep-layer cortical neurons acts to specialize the molecular and functional features of astrocytes during development to shape circuit assembly and function.


Asunto(s)
Astrocitos , Proteínas Hedgehog , Astrocitos/metabolismo , Proteínas Hedgehog/metabolismo , Neurogénesis/fisiología , Neuronas/metabolismo , Sinapsis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA