Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35806327

RESUMEN

Recent evidence suggests that I2-imidazoline ligands have neuroprotective properties in animal models of neurodegeneration, such as Alzheimer's disease (AD). We recently demonstrated that the I2-ligand BU224 reversed memory impairments in AD transgenic mice and this effect was not because of reductions in amyloid-ß (Aß) deposition. In this study, our aim was to determine the therapeutic potential of the powerful analgesic I2-imidazoline ligand CR4056 in the 5xFAD model of AD, since this ligand has been proven to be safely tolerated in humans. Sub-chronic oral administration of CR4056 (30 mg/kg for 10 days) led to an improvement in recognition memory in 6-month-old 5xFAD mice, but not in wild-type littermates, without affecting Aß levels or deposition. Our results also revealed a change in the profile of microglia by CR4056, resulting in a suppression of pro-inflammatory activated microglia, but increased the density of astrocytes and the expression of ApoE, which is mainly produced by these glial cells. In addition, CR4056 restored fibrinogen extravasation, affecting the distribution of markers of astrocytic end feet in blood vessels. Therefore, these results suggest that CR4056 protects against Aß-mediated neuroinflammation and vascular damage, and offers therapeutic potential at any stage of AD.


Asunto(s)
Enfermedad de Alzheimer , Barrera Hematoencefálica , Imidazoles , Imidazolinas , Quinazolinas , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Apolipoproteínas E/biosíntesis , Apolipoproteínas E/genética , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Modelos Animales de Enfermedad , Imidazoles/farmacología , Imidazolinas/metabolismo , Ligandos , Ratones , Ratones Transgénicos , Quinazolinas/farmacología
2.
Int J Mol Sci ; 22(11)2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34071270

RESUMEN

The peroxisome proliferator-activated receptor co-activator-1α (PGC1α) belongs to a family of transcriptional regulators, which act as co-activators for a number of transcription factors, including PPARs, NRFs, oestrogen receptors, etc. PGC1α has been implicated in the control of mitochondrial biogenesis, the regulation of the synthesis of ROS and inflammatory cytokines, as well as genes controlling metabolic processes. The levels of PGC1α have been shown to be altered in neurodegenerative disorders. In the brains of Alzheimer's disease (AD) patients and animal models of amyloidosis, PGC1α expression was reduced compared with healthy individuals. Recently, it was shown that overexpression of PGC1α resulted in reduced amyloid-ß (Aß) generation, particularly by regulating the expression of BACE1, the rate-limiting enzyme involved in the production of Aß. These results provide evidence pointing toward PGC1α activation as a new therapeutic avenue for AD, which has been supported by the promising observations of treatments with drugs that enhance the expression of PGC1α and gene therapy studies in animal models of AD. This review summarizes the different ways and mechanisms whereby PGC1α can be neuroprotective in AD and the pre-clinical treatments that have been explored so far.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Enfermedad de Alzheimer/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Ácido Aspártico Endopeptidasas/metabolismo , Regulación de la Expresión Génica , Terapia Genética , Humanos , Biogénesis de Organelos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Factores de Transcripción/metabolismo
3.
Brain ; 144(5): 1526-1541, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34148071

RESUMEN

Alzheimer's disease, characterized by brain deposits of amyloid-ß plaques and neurofibrillary tangles, is also linked to neurovascular dysfunction and blood-brain barrier breakdown, affecting the passage of substances into and out of the brain. We hypothesized that treatment of neurovascular alterations could be beneficial in Alzheimer's disease. Annexin A1 (ANXA1) is a mediator of glucocorticoid anti-inflammatory action that can suppress microglial activation and reduce blood-brain barrier leakage. We have reported recently that treatment with recombinant human ANXA1 (hrANXA1) reduced amyloid-ß levels by increased degradation in neuroblastoma cells and phagocytosis by microglia. Here, we show the beneficial effects of hrANXA1 in vivo by restoring efficient blood-brain barrier function and decreasing amyloid-ß and tau pathology in 5xFAD mice and Tau-P301L mice. We demonstrate that young 5xFAD mice already suffer cerebrovascular damage, while acute pre-administration of hrANXA1 rescued the vascular defects. Interestingly, the ameliorated blood-brain barrier permeability in young 5xFAD mice by hrANXA1 correlated with reduced brain amyloid-ß load, due to increased clearance and degradation of amyloid-ß by insulin degrading enzyme (IDE). The systemic anti-inflammatory properties of hrANXA1 were also observed in 5xFAD mice, increasing IL-10 and reducing TNF-α expression. Additionally, the prolonged treatment with hrANXA1 reduced the memory deficits and increased synaptic density in young 5xFAD mice. Similarly, in Tau-P301L mice, acute hrANXA1 administration restored vascular architecture integrity, affecting the distribution of tight junctions, and reduced tau phosphorylation. The combined data support the hypothesis that blood-brain barrier breakdown early in Alzheimer's disease can be restored by hrANXA1 as a potential therapeutic approach.


Asunto(s)
Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/efectos de los fármacos , Anexina A1/farmacología , Barrera Hematoencefálica/efectos de los fármacos , Encéfalo/efectos de los fármacos , Animales , Barrera Hematoencefálica/patología , Encéfalo/patología , Permeabilidad Capilar , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos
4.
J Neuroinflammation ; 18(1): 73, 2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33731156

RESUMEN

BACKGROUND: Astrocytes provide a vital support to neurons in normal and pathological conditions. In Alzheimer's disease (AD) brains, reactive astrocytes have been found surrounding amyloid plaques, forming an astrocytic scar. However, their role and potential mechanisms whereby they affect neuroinflammation, amyloid pathology, and synaptic density in AD remain unclear. METHODS: To explore the role of astrocytes on Aß pathology and neuroinflammatory markers, we pharmacologically ablated them in organotypic brain culture slices (OBCSs) from 5XFAD mouse model of AD and wild-type (WT) littermates with the selective astrocytic toxin L-alpha-aminoadipate (L-AAA). To examine the effects on synaptic circuitry, we measured dendritic spine number and size in OBCSs from Thy-1-GFP transgenic mice incubated with synthetic Aß42 or double transgenics Thy-1-GFP/5XFAD mice treated with LAAA or vehicle for 24 h. RESULTS: Treatment of OBCSs with L-AAA resulted in an increased expression of pro-inflammatory cytokine IL-6 in conditioned media of WTs and 5XFAD slices, associated with changes in microglia morphology but not in density. The profile of inflammatory markers following astrocytic loss was different in WT and transgenic cultures, showing reductions in inflammatory mediators produced in astrocytes only in WT sections. In addition, pharmacological ablation of astrocytes led to an increase in Aß levels in homogenates of OBCS from 5XFAD mice compared with vehicle controls, with reduced enzymatic degradation of Aß due to lower neprilysin and insulin-degrading enzyme (IDE) expression. Furthermore, OBSCs from wild-type mice treated with L-AAA and synthetic amyloid presented 56% higher levels of Aß in culture media compared to sections treated with Aß alone, concomitant with reduced expression of IDE in culture medium, suggesting that astrocytes contribute to Aß clearance and degradation. Quantification of hippocampal dendritic spines revealed a reduction in their density following L-AAA treatment in all groups analyzed. In addition, pharmacological ablation of astrocytes resulted in a decrease in spine size in 5XFAD OBCSs but not in OBCSs from WT treated with synthetic Aß compared to vehicle control. CONCLUSIONS: Astrocytes play a protective role in AD by aiding Aß clearance and supporting synaptic plasticity.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Astrocitos/efectos de los fármacos , Vías Nerviosas/efectos de los fármacos , Sinapsis/efectos de los fármacos , Ácido 2-Aminoadípico/farmacología , Enfermedad de Alzheimer/patología , Animales , Tamaño de la Célula/efectos de los fármacos , Espinas Dendríticas/efectos de los fármacos , Encefalitis/metabolismo , Encefalitis/patología , Humanos , Interleucina-6/metabolismo , Ratones , Ratones Transgénicos , Fragmentos de Péptidos/metabolismo
5.
Br J Pharmacol ; 178(3): 654-671, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33140839

RESUMEN

BACKGROUND AND PURPOSE: Activation of type 2 imidazoline receptors has been shown to exhibit neuroprotective properties including anti-apoptotic and anti-inflammatory effects, suggesting a potential therapeutic value in Alzheimer's disease (AD). Here, we explored the effects of the imidazoline-2 ligand BU224 in a model of amyloidosis. EXPERIMENTAL APPROACH: Six-month-old female transgenic 5XFAD and wild-type (WT) mice were treated intraperitoneally with 5-mg·kg-1 BU224 or vehicle twice a day for 10 days. Behavioural tests were performed for cognitive functions and neuropathological changes were investigated by immunohistochemistry, Western blot, elisa and qPCR. Effects of BU224 on amyloid precursor protein (APP) processing, spine density and calcium imaging were analysed in brain organotypic cultures and N2a cells. KEY RESULTS: BU224 treatment attenuated spatial and perirhinal cortex-dependent recognition memory deficits in 5XFAD mice. Fear-conditioning testing revealed that BU224 also improved both associative learning and hippocampal- and amygdala-dependent memory in transgenic but not in WT mice. In the brain, BU224 reduced levels of the microglial marker Iba1 and pro-inflammatory cytokines IL-1ß and TNF-α and increased the expression of astrocytic marker GFAP in 5XFAD mice. These beneficial effects were not associated with changes in amyloid pathology, neuronal apoptosis, mitochondrial density, oxidative stress or autophagy markers. Interestingly, ex vivo and in vitro studies suggested that BU224 treatment increased the size of dendritic spines and induced a threefold reduction in amyloid-ß (Aß)-induced functional changes in NMDA receptors. CONCLUSION AND IMPLICATIONS: Sub-chronic treatment with BU224 restores memory and reduces inflammation in transgenic AD mice, at stages when animals display severe pathology.


Asunto(s)
Enfermedad de Alzheimer , Imidazolinas , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides , Precursor de Proteína beta-Amiloide/genética , Animales , Cognición , Modelos Animales de Enfermedad , Femenino , Imidazoles , Ligandos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
6.
Neuronal Signal ; 4(4): NS20200003, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33304620

RESUMEN

Experimental and epidemiological evidence suggest that modifiable lifestyle factors, including physical exercise, can build structural and cognitive reserve in the brain, increasing resilience to injury and insult. Accordingly, exercise can reduce the increased expression of proinflammatory cytokines in the brain associated with ageing or experimentally induced neuroinflammation. However, the cellular mechanisms by which exercise exerts this effect are unknown, including the effects of exercise on classic or alternative activation of astrocytes and microglia. In the present study, we assess the effects of nine consecutive days of treadmill running on the glial cell response to a single systemic injection of lipopolysaccharide (LPS) and, in parallel, the effects on spatial learning and memory. We show that prior exercise protects against LPS-induced impairment of performance in the object displacement task concomitant with attenuation of IL-1ß, TNFα and IL-10 mRNA expression in the hippocampus. Assessment of isolated astrocytes and microglia revealed that LPS induced a proinflammatory response in these cells that was not observed in cells prepared from the brains of mice who had undergone prior exercise. The results suggest that exercise modulates neuroinflammation by reducing the proinflammatory microglial response, suggesting a mechanism by which exercise may be neuroprotective.

7.
Brain Behav Immun ; 87: 413-428, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31978523

RESUMEN

Microglial activation and neuroinflammatory changes are characteristic of the aged brain and contribute to age-related cognitive impairment. Exercise improves cognitive function in aged animals, perhaps because of a modulatory effect on microglial activation. Recent evidence indicates that inflammatory microglia are glycolytic, driven by an increase in 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), an enzyme that is described as the master regulator of glycolysis. Here we investigated whether microglia from aged animals exhibited a glycolytic signature and whether exercise exerted a modulatory effect on this metabolic profile. Young (4 month-old) and aged (18 month-old) mice were trained for 10 days on a treadmill. One day before sacrifice, animals were assessed in the novel object recognition and the object displacement tests. Animals were sacrificed after the last bout of exercise, microglial cells were isolated, cultured for 5 days and assessed for metabolic profile. Performance in both behavioural tests was impaired in sedentary aged animals and exercise attenuated this age-related effect. A significant increase in glycolysis, glycolytic capacity and PFKFB3 was observed in microglia from aged animals and exercise ameliorated these effects, while it also increased the phagocytic capacity of cells. The senescent markers, ß-galactosidase and p16INK4A, were increased in microglia from sedentary aged mice, and expression of these markers was significantly decreased by exercise. The data demonstrate that the exercise-related improved cognition is orchestrated by a normalization of the metabolic profile and functionality of microglia.


Asunto(s)
Envejecimiento , Reprogramación Celular , Senescencia Celular , Microglía , Fosfofructoquinasa-2 , Condicionamiento Físico Animal , Animales , Encéfalo/metabolismo , Glucólisis , Ratones , Microglía/metabolismo , Fosfofructoquinasa-2/metabolismo
8.
BMJ Open Sport Exerc Med ; 5(1): e000499, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31258928

RESUMEN

OBJECTIVE: To investigate the brain-derived neurotrophic factor (BDNF) and cognitive response to a short bout of high-intensity aerobic exercise in older adults with mild cognitive impairment (MCI). METHODS: Participants were randomised to one of two testing schedules, completing either a standardised exercise test (group A) or a resting control condition (group B). Blood sampling and cognitive measures (visuospatial learning and memory, sustained attention and executive function) were collected at baseline (T1) and postintervention (T2). An additional measurement of study outcomes was collected after exercise (T3) in group B only. RESULTS: 64 participants (female 53.2%, mean age 70.5±6.3 years) with MCI were recruited. From T1 to T2, serum BDNF (sBDNF) concentration increased in group A (n=35) (median (Md) 4564.61±IQR 5737.23 pg/mL to Md 5173.27±5997.54 pg/mL) and decreased in group B (Md 4593.74±9558.29 pg/mL to Md 3974.66±3668.22 pg/mL) (between-group difference p=0.024, effect size r=0.3). The control group made fewer errors on the sustained attention task compared with the exercise group (p=0.025). Measures of visuospatial learning and memory or executive function did not change significantly between groups. CONCLUSION: This study is the first to show that a short bout of high-intensity aerobic exercise increases peripheral sBDNF in a population with MCI. However, acute exercise did not improve cognitive performance.

9.
PLoS One ; 8(10): e78332, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24205200

RESUMEN

BACKGROUND AND AIMS: Glutaric aciduria type I (GA-I) is characterized by accumulation of glutaric acid (GA) and neurological symptoms, such as cognitive impairment. Although this disease is related to oxidative stress and inflammation, it is not known whether these processes facilitate the memory impairment. Our objective was to investigate the performance of rat pups chronically injected with GA and lipopolysaccharide (LPS) in spatial memory test, antioxidant defenses, cytokines levels, Na+, K+-ATPase activity, and hippocampal volume. We also evaluated the effect of N-acetylcysteine (NAC) on theses markers. METHODS: Rat pups were injected with GA (5 umol g of body weight-1, subcutaneously; twice per day; from 5th to 28th day of life), and were supplemented with NAC (150 mg/kg/day; intragastric gavage; for the same period). LPS (2 mg/kg; E.coli 055 B5) or vehicle (saline 0.9%) was injected intraperitoneally, once per day, from 25th to 28th day of life. Oxidative stress and inflammatory biomarkers as well as hippocampal volume were assessed. RESULTS: GA caused spatial learning deficit in the Barnes maze and LPS potentiated this effect. GA and LPS increased TNF-α and IL-1ß levels. The co-administration of these compounds potentiated the increase of IL-1ß levels but not TNF-α levels in the hippocampus. GA and LPS increased TBARS (thiobarbituric acid-reactive substance) content, reduced antioxidant defenses and inhibited Na+, K+-ATPase activity. GA and LPS co-administration did not have additive effect on oxidative stress markers and Na+, K+ pump. The hippocampal volume did not change after GA or LPS administration. NAC protected against impairment of spatial learning and increase of cytokines levels. NAC Also protected against inhibition of Na+,K+-ATPase activity and oxidative markers. CONCLUSIONS: These results suggest that inflammatory and oxidative markers may underlie at least in part of the neuropathology of GA-I in this model. Thus, NAC could represent a possible adjuvant therapy in treatment of children with GA-I.


Asunto(s)
Acetilcisteína/farmacología , Animales Recién Nacidos/metabolismo , Glutaratos/efectos adversos , Glutaratos/metabolismo , Lipopolisacáridos/efectos adversos , Trastornos de la Memoria/tratamiento farmacológico , Memoria Espacial/efectos de los fármacos , Animales , Antioxidantes/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Interleucina-1beta/metabolismo , Masculino , Trastornos de la Memoria/metabolismo , Ratas , Ratas Wistar , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...